
Designing a Hybrid Controller:

Task Objectives:
The end desire is to have a robot that will start from a dangling pendulum, swing itself up and balance indefinitely.
A different controller will be used for each task in this process, together forming a hybrid controller. Because the
hybrid controller will be comprised of multiple different sub controllers, it is necessary to first design the control logic
for this hybrid controller that selects between different sub controllers based of the state of robot.

Background:

Hybrid Controllers:
The controller necessary to accomplish function with the robot will vary depending on the function and the state of
the model. For example when attempting to balance the robot, the controller needs to be fast, accurate and it needs
to account for real world physics and the parameters of the specific robot being used. Things like internal friction
and other pesky factors will demand the use of a more complex controller for the balance task. However more simple
tasks like swinging the arm up or resetting the robot back to its starting point can make use of much more simplistic
controllers that do not account for the impacts of physics and friction etc.

Much like a CPU is composed of datapath and control elements (where different datapath functions all operate
in parallel but the selected output is determined by control logic), a basic hybrid controller is comprised of a set of
system controllers that run in parallel while a digital controller selects between them based on some control logic.

High Level Overview of Hybrid Controller:
It is best to start with a high level picture of what the controller will look like before defining details about each
section. A digital controller will analyze the current states of the robot, and determine which controller fits the
situation. It will then send a control signal to a multiport switch to functionally select the output of the appropriate
controller. Meanwhile, all controllers are calculating their outputs... but it is only the selected controllers output
that makes it through the mux and acts as the control voltage for the system.

Figure 1: Overview of Hybrid Controller.

1

Outlining the Entire Hybrid Controller Schematic:
Before going into the details of implementing each element, here is a schematic showing the overview of this specific
implementation of the hybrid controller.

Figure 2: Schematic for the Entire Hybrid Controller.

2

Implementing a Digital Controller and Control Logic to Switch Between Sub-Controllers:
The first step in creating the digital controller that selects between system controllers in the hybrid, is identifying
some criteria on which to base the control logic for the selection. In this case, the criteria will mostly be defined by
the current state of q2. To make it even more simple, define three regions for q2 that will require different controllers.

Figure 3: Definable controller regions.

A set of rules defining what changes in controllers are permitted keeps the logic very simple. For the most basic
hybrid controller the 3 states Balance, Swing Up and Wait abide by the following logical flow path:

1. Swing Up can only go to Balance

2. Balance can only go to Wait

3. Wait can only to to Swing Up

This simple 3 region design gets the basic functionality described previously. However to design a more robust
controller with some extended functionality, it was necessary to include some extra control logic and a few more
sub controllers for very specific tasks like resetting the robot and unwinding cables. The final mux for this is shown
below:

Figure 4: Multi-Port Switch.

3

The contents of the ”hybrid controller box” from the overview schematic (what is essentially the digital controller)
is shown below:

Figure 5: Digital Controller.

The normalization of the incoming angles takes place in a function block. Normalizing angles is important here
because our controllers will use the values of q1 and q2 in a few equations so having a rolled over angle value will distort
its impact and lead to broken controllers. Experimentation with different mod arrangements led to conditionally
effective operation of the robot, however for best practice using atan2() function in matlab and feeding in the sine and
cosine value of the current angle for the x and y arguments always provided a perfectly normalized result regardless
of other circumstances. The contents are shown below:

function [q1 normalized,q1 dot, q2 norm AND altered,q2 dot] = fcn(x)
%#codegen
q1 = x(1);
q1 dot = x(2);
q2= x(3);
q2 dot = x(4);

x1 = cos(q1);
y1 = sin(q1);
x2 = cos(q2);
y2 = sin(q2);

q1 normalized = atan2(y1,x1);
q2 norm AND altered = atan2(y2, x2);

if q2 norm AND altered>0
q2 norm AND altered = q2 norm AND altered-pi;

else
q2 norm AND altered = q2 norm AND altered+pi;

end

end

4

The real control logic or brains of this digital controller (which takes place in the function block) is shown below:

function [next state,toBe prev q1] = fcn(q1, q1 dot, q2, q2 dot, prev state, prev q1)

state reset = 3;
state crossBack = 4;
state wait = 5;
state swingUp = 2;
state balance = 1;

toBe prev q1 = q1;

if prev state == state reset
%keep resetting until q1 and q2 are near 0 and the speeds are low
if(abs(q1)<(pi/20) && abs(q2)<pi/10 && abs(q1 dot)<0.1 && abs(q2 dot)<0.2)

next state = state swingUp;
else

next state = state reset;
end

elseif prev state == state crossBack
%move q1 back over the discontinuity... then reset as normal
if(abs(q1)>pi/8) && ((q1*prev q1)<0)

next state = state reset;
else

next state = state crossBack;
end

elseif prev state == state wait
%keep waiting until q2 has settled back down in both position and speed
if (abs(q1)>pi/8) && ((q1*prev q1)<0)

next state = state crossBack;
else

if(abs(q2)<pi/10 && abs(q2 dot)<0.35)
next state = state reset;

else
next state = state wait;

end
end

elseif (prev state ~= state swingUp) && (abs(q2)<(pi-35*pi/180))
%below upper range and not swinging up
next state= state wait;

elseif prev state == state swingUp
if abs(q1)>(pi/1.5)

next state = state wait;
elseif abs(q2)>(pi-27.5*pi/180)

next state = state balance;
else

next state = state swingUp;
end

elseif (prev state == state balance)
if (abs(q1)>pi/8) && ((q1*prev q1)<0)

next state = state crossBack;
else

next state = state balance;
end

else
next state = state wait;

end

end

5

Implementing the ”Wait” Controller:
Implementing the ”wait” controller is by far the easiest task in this whole hybrid design. The wait controller is
only selected when the digital controller witnesses the robot get knocked out of the balance region. Therefore the
only function of the wait controller is to cut all control voltage to the robot so that it can settle back to a hanging
pendulum before swing up begins again. This is easily accomplished by simply outputting ”0”. The entirety of the
wait controller looks like this:

Figure 6: Entirety of the ”Wait” Controller.

6

Implementing the ”Swing Up” Controller:
There are multiple strategies to implement a swing up controller. For example a controller could be designed to
maximize potential energy. However an easier control scheme borrows heavily from physical intuition. If you think
about how you’d swing up the pendulum by hand, you’d jerk q1 back and forth while looking at q2 and q̇2. Similarly
we can create control scheme as follows:

q1desired(t) = K1q2(t) +K2q̇2(t) (Swing Up Control Scheme)

Having calculated a desired target for q1, a PV controller can help translate that desired value into a control
target. Normally a PD control would compensate an error signal, but that would require adding other elements as a
control. But a PV controller can modify existing elements as a method of control. The PV controller is a state-space
controller and modifies states with P & V gain in a feedback path. To do so it first deconstructs the states, then
modifies them and reconstructs them later.

The PV controller is implemented somewhat like the following, where Kp is the proportional gain:

Figure 7: PV controller

q1actual(s)

q1desired(s)
=

KKp
τ

s2 + (1+KKV
τ)s+

KKp
τ

(1)

Because the swingUp controller just needs to get the pendulum up into the balance region, without a terrible
amount of accuracy, it is possible to ignore dynamics for the sake of simplicity. This avoids 4th order eqns and
drastically simplifies the math involved.

Looking at things theoretically: Given the transfer function H(s) for the servo...

k

(τs+ 1)s
=
q1(s)

V (s)
(2nd order)

k

τs+ 1
=
q̇1(s)

V (s)
(1st order)

First it is necessary to establish how loose the system can be. Choosing to permit a little bit of overshoot for a
responsive system is a fair trade during swingUp. To describe this behavior quantitatively, the system will aim for
the following:

tp = 0.15seconds (time to peak)

mp = 5% (percent overshoot)

7

The canonical form for a second order system is as follows:

H(s) =
Kω2

s2 + 2ζωs+ ω2
(Canonical form 2nd order system)

where K is the system gain, ζ is the damping ratio, and ω is the natural frequency of the system. The damping ratio
ζ is a real number that defines damping properties of the system. Damping is defined as ”the inherent ability of
the system to oppose the oscillatory nature of the system’s transient response”. A higher damping effect manifests
as less percent overshoot and slower settling time. Therefore, larger ζ values produce transient responses with less
oscillatory nature. If one finds exact values for ζ and ω, the system time responses can easily be plotted and stability
can easily be checked.

So, taking the equations we had and moving them from the time domain into the Laplace frequency domain to
match the Canonical 2nd order above, we get the characteristic equation below:

ω2
n

s2 + 2ζωns+ ω2
n

(charactersitic equation)

where ζ = damping ratio and ωn = natural frequency.

Then we can define the following:

mp = 100e
− πζ√

1−ζ2 (theoretical mp)

tp =
π

ωn
√

1 − ζ2
(theoretical tp)

Provided the values of K = 1.76 and τ = 0.0285. Rearrange the theoretical tp equation for ζ and rearrange the
theoretical mp equation for ωn. Then plug in the target values for tp and mp defined previously. This yields:

ζ =
− ln(0.05)√
π2 + ln2(0.05)

= 0.6901 (Damping Ratio ζ)

ωn =
π

0.15
√

1 − ζ2
= 28.9398 (natural frequency ωn)

Now comes the key step of finding KV and Kp by symmetry. Comparing the characteristic equation and equation
(1) from the PV controller...

KKp
τ

s2 + (1+KKV
τ)s+

KKp
τ

=
ω2
n

s2 + 2ζωns+ ω2
n

(2)

...yields equations useful in solving for KV and Kp.

1 +KKV

τ
= 2ζωn (eqn to solve for KV)

KKp

τ
= ω2

n (eqn to solve for Kp)

8

Kp =
ω2
nτ

K
=

28.942 ∗ 0.0285

1.76
= 13.5620 (solved for KV)

KV =
2ζωnτ − 1

K
= 0.07862 (solved for Kp)

9

Implementing this controller becomes simple once we have the values of KV and Kp. The schematic for the
swingUp controller is shown below:

Figure 8: Swing Up Controller

The normalization of the incoming angles takes place in a function block. Here q2 has to be altered such that 0
is centered at the bottom to avoid discontinuities in q2 around the bottom where the swing up controller operates.
The contents of the normalization block are shown below:

function [q1 normalized,q2 norm AND altered,q2 dot,q1 dot] = fcn(x)
%#codegen
q1 = x(1);
q1 dot = x(2);
q2= x(3);
q2 dot = x(4);

x1 = cos(q1);
y1 = sin(q1);
x2 = cos(q2);
y2 = sin(q2);

q1 normalized = atan2(y1,x1);
q2 norm AND altered = atan2(y2, x2);

if q2 norm AND altered>0
q2 norm AND altered = q2 norm AND altered-pi;

else
q2 norm AND altered = q2 norm AND altered+pi;

end

end

Additionally the calculation of q1demanded occurs in a function block whose contents are as follows:

function q1 demanded = q1demand(q2,q2 dot)
%Uses PD Controller to calculate demanded q1 using q2 and q2 dot
P = 1;
D = 0.02;
q1 demanded = P*asin(sin(q2))+D*q2 dot;

10

Implementing the ”Balance” Controller:
The next task is implementing a balance controller to keep the inverted pendulum robot balanced. This controller
will be selected only when the robot is coming from the swing up phase and q2 is in the top ”balance” region. The
controller will be a little more complex than the others because the balancing act requires consideration of physics,
friction, gravity etc. We will use the model of the system derived in previous sections and linearize it about a point
(set of state values). The target values are actually trivial to define. For a balanced robot, q2 will be 0 in a system
where 0 is defined as the top of our coordinate space for q2.
Starting from a simple state space model:

ẋ = Ax+Bu (State Space Model)

where ”A” is a 4x4 matrix, ”x” is a 4x1 matrix of the states, ”B” is a 4x1 matrix and u is our input voltage.

The Jacobian A is defined as below:

A =



∂q̇1
∂q1

∣∣∣∣
x0

∂q̇1
∂q̇1

∣∣∣∣
x0

∂q̇1
∂q2

∣∣∣∣
x0

∂q̇1
∂q̇2

∣∣∣∣
x0

∂q̈1
∂q1

∣∣∣∣
x0

∂q̈1
∂q̇1

∣∣∣∣
x0

∂q̈1
∂q2

∣∣∣∣
x0

∂q̈1
∂q̇2

∣∣∣∣
x0

∂q̇2
∂q1

∣∣∣∣
x0

∂q̇2
∂q̇1

∣∣∣∣
x0

∂q̇2
∂q2

∣∣∣∣
x0

∂q̇2
∂q̇2

∣∣∣∣
x0

∂q̈2
∂q1

∣∣∣∣
x0

∂q̈2
∂q̇1

∣∣∣∣
x0

∂q̈2
∂q2

∣∣∣∣
x0

∂q̈2
∂q̇2

∣∣∣∣
x0



(3)

Knowing that q̇1 only dependent on q̇1, the partial derivatives of q̇1 are simply 0 other than the partial with
respect to itself which is 1. This turns the first row of the Jacobian into [0 1 0 0]. Similarly the third row is obviously
just [0 0 0 1]. Additionally none of the parameters depend on q1. This leaves the only values left to find shown as
”?”.

A =


0 1 0 0
0 ? ? ?
0 0 0 1
0 ? ? ?

 (4)

To find these ”?” values, first recall that:[
m(q)

] [q̈1
q̈2

]
+
[
c(q, q̇)

] [q̇1
q̇2

]
+
[
f(q̇1)

]
+
[
g(q)

]
=

[
v
0

]
(5)

Rearranging for q̈1 and q̈2 yields: [
q̈1
q̈2

]
= M−1[−C

[
q̇1
q̇2

]
− F − g +

[
v
0

]
] (6)

These values of q̈1 and q̈2 can be differentiated to find the ”?” values for rows two and four of the Jacobian matrix.

Additionally the point to linearize about is easy to define, technically q2 is the important parameter here and
values for other parameters can differ but leaving them all 0 makes math easy.

x0 =


0
0
0
0

 (7)

11

The equations for q̈1 and q̈2 still need to be defined in terms of theoretical or measured system parameters θ1−θ6.
Recall the following were found previously:

M(q) =

θ1 + θ2 sin(q2)2 θ3 cos(q2)

θ3 cos(q2) θ2

 (8)

C(q, q̇) =

2θ2 sin(q2) cos(q2)q̇1q̇2 −θ3 sin(q2)q̇2

−θ2 sin(q2) cos(q2)q̇1 θ6

 (9)

f(q̇1) =

θ5q̇1
0

 (10)

g(q) =

 0

θ4g sin(q2)

 (11)

A simple Matlab script can help make short work of find the inverse of these matrices, and then differentiating
them with respect to q2, q̇1, q̇2 to yield symbolic equations for the partial derivatives replacing the ”?’s” in the Jaco-
bian matrix A.

syms theta1 theta2 theta3 theta4 theta5 theta6 q1 q2 q1 dot q2 dot grav q1 dd q2 dd v
M = [theta1+theta2*(sin(q2))ˆ2 theta3*cos(q2);

theta3*cos(q2) theta2];
C = [2*theta2*sin(q2)*cos(q2)*q2 dot -theta3*sin(q2)*q2 dot;

-theta2*sin(q2)*cos(q2)*q1 dot theta6];
F = [theta5*q1 dot;

0];
G = [0;

theta4*grav*sin(q2)];
M1 = inv(M);
C1 = -M1*C;
F1 = -M1*F;
G1 = -M1*G;
V1 = M1*[v;0];

q1 dd = C1(1,1)*q1 dot + C1(1,2)*q2 dot + F1(1,1) + G1(1,1) + V1(1,1);
q2 dd = C1(2,1)*q1 dot + C1(2,2)*q2 dot + F1(2,1) + G1(2,1) + V1(2,1);

temp1 = diff(q1 dd, q1 dot);
temp1 1= subs(temp1, [q1 q1 dot q2 q2 dot], [0 0 0 0])
temp2 = diff(q1 dd, q2);
temp2 1= subs(temp2, [q1 q1 dot q2 q2 dot], [0 0 0 0])
temp3 = diff(q1 dd, q2 dot);
temp3 1= subs(temp3, [q1 q1 dot q2 q2 dot], [0 0 0 0])

temp4 = diff(q2 dd, q1 dot);
temp4 1= subs(temp4, [q1 q1 dot q2 q2 dot], [0 0 0 0])
temp5 = diff(q2 dd, q2);
temp5 1= subs(temp5, [q1 q1 dot q2 q2 dot], [0 0 0 0])
temp6 = diff(q2 dd, q2 dot);
temp6 1= subs(temp6, [q1 q1 dot q2 q2 dot], [0 0 0 0])

12

After solving symbolically with the previous script, the equations will be readable by eye and writing down a
theoretical Jacobian matrix yields the following, where d = θ1θ2 − θ23.

A =



0 1 0 0

0 −θ2θ5
d

gθ3θ4
d

θ3θ6
d

0 0 0 1

0 θ3θ5
d

−gθ1θ4
d

−θ1θ6
d


(12)

Similarly, factoring out voltage from one of the previous equations has lead to the B matrix:
0
θ2
d
0
−θ3
d

 (13)

Finally, subbing in the experimentally determined values for θ1−θ6 can be accomplished with a secondary script.

theta1 = 0.0751;
theta2 = 0.0292;
theta3 = 0.0260;
theta4 = 0.1376;
theta5 = 0.5381;
theta6 = 0.0066;
syms grav q1 q2 q1 dot q2 dot q1 dd q2 dd v
M = [theta1+theta2*(sin(q2))ˆ2 theta3*cos(q2);

theta3*cos(q2) theta2];
C = [2*theta2*sin(q2)*cos(q2)*q2 dot -theta3*sin(q2)*q2 dot;

-theta2*sin(q2)*cos(q2)*q1 dot theta6];
F = [theta5*q1 dot;

0];
G = [0;

theta4*grav*sin(q2)];
M1 = inv(M); C1 = -M1*C; F1 = -M1*F; G1 = -M1*G; V1 = M1*[v;0];

q1 dd = C1(1,1)*q1 dot + C1(1,2)*q2 dot + F1(1,1) + G1(1,1) + V1(1,1);
q2 dd = C1(2,1)*q1 dot + C1(2,2)*q2 dot + F1(2,1) + G1(2,1) + V1(2,1);

temp1 = diff(q1 dd, q1 dot);
temp1 1= subs(temp1, [q1 q1 dot q2 q2 dot grav], [0 0 0 0 -9.81])
temp2 = diff(q1 dd, q2);
temp2 1= subs(temp2, [q1 q1 dot q2 q2 dot grav], [0 0 0 0 -9.81]);
temp2 1=-3256176278324243/140737488355328
temp3 = diff(q1 dd, q2 dot);
temp3 1= subs(temp3, [q1 q1 dot q2 q2 dot grav], [0 0 0 0 -9.81])

temp4 = diff(q2 dd, q1 dot);
temp4 1= subs(temp4, [q1 q1 dot q2 q2 dot grav], [0 0 0 0 -9.81])
temp5 = diff(q2 dd, q2);
temp5 1= subs(temp5, [q1 q1 dot q2 q2 dot grav], [0 0 0 0 -9.81]);
temp5 1=4702669971195205/70368744177664
temp6 = diff(q2 dd, q2 dot);
temp6 1= subs(temp6, [q1 q1 dot q2 q2 dot grav], [0 0 0 0 -9.81])

A = [0 1 0 0;
0 temp1 1 temp2 1 temp3 1;
0 0 0 1;
0 temp4 1 temp5 1 temp6 1];

B = [0; theta2/(theta1*theta2-theta3ˆ2); 0; -theta3/(theta1*theta2-theta3ˆ2)];
system poles = eig(A)
K = place(A, B, [-5 -5.1 -5.2 -5.3])

13

Recall that the system in use is modeled with ẋ = Ax + Bu. The system poles can be found by finding the
eigen values of the Jacobian matrix A just defined. Matlab has a handy function we can use, and a simple command
”eig(A)” yields the following poles:

0, −12.8005, −5.1492, 7.2648 (ẋ = Ax+Bu system poles)

A quick observation will catch a potential problem. The last pole (7.2648) is positive. ex will blow up if x is positive
and converge if x is negative. Without all negative poles the system is an unstable open loop. It will not converge.
To close the loop it is possible to functionally change A to a different matrix A-Bk which places all the poles in the
left hand plane so that the system is not unstable. The new system will look like this:

Figure 9: Altered System to shift poles.

There is a wonderful Matlab function called ”place” which makes this process remarkably simple. The function
provides a gain k (shown in the system above) so that the poles will be shifted to a specific place. In this case the
shifted locations are set to [-5,-5.1,-5.2,-5.3]. The ”place” function yields the following k vector.

k =
[
−0.7898, −1.557, −14.2257, −1.8764

]
(k vector)

The states X = [q1, q̇1, q2, q̇2] are fed directly into this gain. The magnitude of each element in the k vector indicates
significance of the elements in X. Logically the third value, corresponding to q2 is has the largest magnitude because
the balance controller focuses mostly on q2 when balancing.

14

The final schematic for the balance controller is shown below:

Figure 10: Final Balance Controller.

The contents of the normalize block are shown below:

function [q1 normalized,q1 dot,q2 normalized,q2 dot] = fcn(x, q1 desired)
%#codegen
q1 = x(1);
q1 dot = x(2);
q2= x(3);
q2 dot = x(4);

x1 = cos(q1);
y1 = sin(q1);
x2 = cos(q2);
y2 = sin(q2);

q1 normalized = atan2(y1,x1)-q1 desired;
q2 normalized = atan2(y2, x2);
end

15

Experimenting with Pole Locations:
A pole is a point of impossibility in a system where if things approach that point, the value of the system approaches
infinity. Mathematically a pole is defined as a value of s where the denominator of the transfer function becomes 0.
The locations of the poles, and the values of the real and imaginary parts of the pole determine the response of the
system. Real parts correspond to exponentials, and imaginary parts correspond to sinusoidal values. For a stable
system, all poles must be negative (ie: in the Left Half Plane) because an exponential function with positive poles
makes the system approach infinity. We want it to converge to 0 for stability. The order of the poles do not matter.
In this case, the Matlab ”place” function cannot support identical pole placements. Because of this the poles need
to be different (can’t support multiplicities).

In order to observe the effects of various pole locations, the following K vectors were generated and the physical
robot was observed using the K vector in the balance controller.

K(1:4) = place(A, B, [-5 -5.1 -5.2 -5.3])
%Resultant K: -0.7827 -1.1504 -13.7885 -1.8155

K(1:4) = place(A, B, [-2 -2.1 -2.2 -2.3])
%Resultant K: -0.0237 -0.5819 -5.3698 -0.5114

K(1:4) = place(A, B, [-10 -10.1 -10.2 -10.3])
%Resultant K: -11.8172 -5.2659 -53.0948 -7.4857

K(1:4) = place(A, B, [-1 -3 -5 -7])
%Resultant K: -0.1169 -0.7343 -8.8055 -1.0968

K(1:4) = place(A, B, [-5 -7 -9 -11])
%Resultant K: -3.8589 -2.6633 -29.7584 -4.1281

K(1:4) = place(A, B, [-7 -5 -3 -1])
%Resultant K: -0.1169 -0.7343 -8.8055 -1.0968

K(1:4) = place(A, B, [-5+1i -5-1i -5 -5.1])
%Resultant K: -0.7384 -1.1184 -13.3572 -1.7520

The observations are listed below:

• With the smaller pole values (-2, -2.1, -2.2, -2.3), the system could not counter quick enough to overcome the
initial jerk up.

• With the bigger pole magnitudes (-10,-10.1,-10.2,-10.3) Unexpected behavior. The system was very unstable.
Looking at the output K, the value corresponding to q1 is weighed in substantially now. This might be why
the system is so unstable, because q1 shouldn’t have much effect at all.

• With varied poles (-1,-3,-5,-7), the system was able to balance, but it requires a larger q1 distance for counter
balance maneuvers. This might be because q1 is 7 times less weighted relatively than it was in the original.

• With varied poles (-5,-7,-9,-11) the system was not stable at all.

• With varied poles (-5+i, -5-i, -5, -5.1), The system balanced every time, which was expected given the identical
real portions of the poles to the original. However the system oscillated a little more than the original which
was expected with the presence of the sinusoidal component influence from the imaginary.

16

Implementing a ”Reset” Controller:

Figure 11: Reset Controller.

The contents of the normalize block are shown below:

function [q1 normalized,q1 dot,q2 normalized,q2 dot] = fcn(x)
%#codegen
q1 = x(1);
q1 dot = x(2);
q2= x(3);
q2 dot = x(4);

x1 = cos(q1);
y1 = sin(q1);
x2 = cos(q2);
y2 = sin(q2);

q1 normalized = atan2(y1,x1);
q2 normalized = atan2(y2, x2);
end

17

Preventing Cable Winding and q1 Rollover:

Figure 12: Crossover Discontinuity Controller to Unwind Cables.

The contents of the normalize block are shown below. For this controller, most of the logic happens here.

function [q1 normalized,q1 dot,q2 normalized,q2 dot] = fcn(x)
%#codegen
q1 = x(1);
q1 dot = x(2);
q2 = x(3);
q2 dot = x(4);

x1 = cos(q1);
y1 = sin(q1);
x2 = cos(q2);
y2 = sin(q2);

q2 normalized = atan2(y2,x2);
q1 normalized = atan2(y1,x1);

%ignore discontinuity, permit q1 to be between -2pi:2pi instead of -pi:pi
if(q1 normalized < 0)

q1 normalized = pi - q1 normalized;
else

q1 normalized = -pi - q1 normalized;
end

end

18

Controlling the Robot with a Kinect Sensor
What better fun is there, than controlling a robot by waving your hands. There were a few design considerations
that had to be fleshed out however.

• The robot hardware was all setup with a computer running Matlab r2012b which makes implementing data
acquisition for the kinect sensor a much more tedious process involving 3rd party solutions. Matlab r2013+
introduced simpler implementations.

• I had access to a computer running Matlab r2013b, but conducting the data acquisition on a different PC
meant communicating that information over a network.

• Assuming the network connection was operational in Matlab, there were still two functions that needed to
execute simultaneously... 1) Simulink model controlling the robot... and 2) the client script receiving updated
info from the server. Also the robot controller would still have to run lightning fast, whereas the updated
commands from the server could come in relatively slowly (20/second). Without being able to put the call
in the control loop itself, the solution solution would have to involve two asynchronously parallel function. Of
course Matlab doesn’t lend itself to simple asynchronous parallelism. Although there are some workarounds.[I
later discovered this was unnecessary, as the model was running externally and a simpler solution would suffice]

19

Drafting a Server to Acquire Kinect Data

%%%%%%%% Rough SERVER Draft %%%%%%%%%%%%
close all; clear all; clc;

%define data to send over network as a 1x1 array (for simple command code)
dataPackage = zeros(1,1);
s = whos('dataPackage')

%define server and open it
tcpipServer = tcpip('0.0.0.0',55000,'NetworkRole','Server');
set(tcpipServer,'OutputBufferSize',s.bytes);
display('Initialized Server');
fopen(tcpipServer);
display('Acquired Client, beginning Kinect Setup');

%setup path for kinect stuff
utilpath = fullfile(matlabroot, 'toolbox', 'imaq', 'imaqdemos', ...

'html', 'KinectForWindows');
addpath(utilpath);

% The Kinect for Windows Sensor shows up as two separate devices in IMAQHWINFO.
hwInfo = imaqhwinfo('kinect');

% Create the VIDEOINPUT objects for the depth streeam, which is the 2nd device
depthVidOBJ = videoinput('kinect',2);

depthVidOBJ.TriggerRepeat = Inf;
depthVidOBJ.FrameGrabInterval = 1;

% Get the VIDEOSOURCE object from the depth device's VIDEOINPUT object.
depthSrc = getselectedsource(depthVidOBJ);

% Turn on skeletal tracking.
depthSrc.TrackingMode = 'Skeleton';

%turn on the stream
start(depthVidOBJ)

%we will always be dealing with the first frame since we deal with them one at a time here
frameInQuestion=1;

acquireCount = 50; %determines how long the data acquisition will continue for
fprintf('Initiating Data Acquisition\n\n');
while(1)%acquireCount >=0)

%acquire the data
[frameDataDepth, timeDataDepth, metaDataDepth] = getdata(depthVidOBJ);

anySkeletonsTracked = any(metaDataDepth(frameInQuestion).IsSkeletonTracked ~= 0);
if(anySkeletonsTracked)

% See which skeletons were tracked.
trackedSkeletons = find(metaDataDepth(frameInQuestion).IsSkeletonTracked);

% Skeleton's joint indices with respect to the color image
jointIndices = metaDataDepth(frameInQuestion).JointImageIndices(:, :, trackedSkeletons);

%define specific joint Indices
rightHand= jointIndices(8,:);
leftHand= jointIndices(12,:);

%check for control gestures (currently simple 2 hand control gestures)
if(abs(rightHand(2)-leftHand(2))>25) %are the hands around the same heigh

if(rightHand(2)>leftHand(2))
fwrite(tcpipServer,dataPackage(:),'double');
display('Move Robot Right');
dataPackage(1)=2;

else
display('Move Robot Left');

20

dataPackage(1)=1;
end

else
display('Keep Robot In Place');
dataPackage(1)=0;

end
fwrite(tcpipServer,dataPackage(:),'double');

else
display('No skeleton detected');

end
acquireCount = acquireCount-1;

end

stop(depthVidOBJ)
fprintf('\nDone Acquiring Data\n');

fclose(tcpipServer);
display('Successfully closed server');

Drafting an Asynchronous Parallel Client to Retrieve Data After spending a great deal of time exper-
imenting with asynchronous parallelism in Matlab (including getting into some java threading behind the scenes) it
dawned on me that the controller was actually being run externally. This meant providing instructions to the model
transformed into a dramatically simple task. To take care of the updates I used a parameter set command in the
client that targeted a variable in the model and executed on update from the server.

%%%%%%%%%%%%%%% CLIENT %%%%%%%%%%%
clear all; close all; clc;
tcpipClient = tcpip('172.16.1.71',55000,'NetworkRole','Client') %for
% server running on kinect computer

set(tcpipClient,'InputBufferSize',8);
set(tcpipClient,'Timeout',1000);
fopen(tcpipClient);
while(1)

rawData = fread(tcpipClient,1,'double');
display(rawData);
if rawData == 0

set param('Hybrid Controller/c','Value','0');
elseif rawData == 1

set param('Hybrid Controller/c','Value','1.57');
else

set param('Hybrid Controller/c','Value','-1.57');
end

end
fclose(tcpipClient);
display('successfully retrieved data from server');

21

Task Chart:

Task Unresolved Issues
Simulink Pallet Familiarization None
Read from Encoders None
Use sine input w/ good fre-
quency to make sinusoid Scope
Reading

None

Low Pass Filter between the gain
and the scope

None

Oscillate between - and + 45 de-
grees with switching sign on a
constant voltage whenever reach-
ing the barriers of 45 degrees

None

Oscillate Movement via PID None
Create simple PID controller
with a simple repeating step in-
put

None

Oscillate the system with various
waveforms

None

Move the link to any given posi-
tion and hold that position

None

Created a GUI with 3 selectable
modes with controls to move to
0, to position X or to oscillate be-
tween + and - X.

None

Derive math for transforming co-
ordinates between frames.

None

Defined all points of the robot in
their initial respective frames

None

Draw the base of the robot in
Frame-0

None

Draw the first link of the robot
in Frame 1

None

Convert Points Representing the
First Link

None

Convert Points Representing the
Second Link

None

Draw the entire robot in Frame
0

None

Simulate and Animate the Robot
Given an input theta value

None

Define the work envelope None
Animate the robot w a work en-
velope Overlay

None

Simulate and animate the end ef-
fector path

None

Test the Simulation None

22

Task Chart Continued:

Derive Matrices (M,C,f and g) None
Derive equations for robot pa-
rameters theta1-theta6 provided
physical parameters for the
robot.

None

Conduct previous simulations
with updated physics considera-
tions

None

Generate Data for Measured
Voltage and States

None

Find experimental theta values
from measured robot state data

None

Test experimental parameters None
Implement a digital controller
and control logic to switch be-
tween sub-controllers (glorified
multiplexer)

None

Implement a wait controller with
0 voltage input

None

Derive Kv and Kp for the swing
up controller

None

Implement a swing up controller None
Derive A and B matrices for the
Balance Controller

None

Shift the poles to the LHP with
a functional gain K

None

Implement a Balance Controller None
Experiment with Pole Place-
ments

None

Implement a Reset Controller None
Prevent Cable Winding with a q1
rollover

None

Control the Robot with a kinect
sensor

None

Elaborate on Gesture Control
and Network Functionality and
Reliability

None

23

