Robot Simulation using Lagrangian Dynamics

Task Objectives:
We already created code to animate the pendubot when provided pre-constructed or even measured values for the
D.O.F. The final implementation fo these functions took the form of figure 1.

O, —>
O—>

Animate Robot
Function

Figure 1: Animation Function Implementation from Previous Work.

However these functions serve only to animate or playback the movements of the robot, not calculate or simulate
how it will move based off voltage input. To handle the task of true simulation, we turn to Lagrangian Dynamics.
The objective here is to create a simulation environment that, when given an input voltage and a current position
of the robot, can accurately predict/calculate the next time-step’s position of the robot while considering the reality
of physical forces acting on the limbs of the robot. Figure 2 demonstrates the general outline of this simulation.
These calculated positional values can be inputs to our previous animation functions to yield a surprisingly effective
simulation. This function combination is outlined in figure 2.

Dynamics é

Simulation

Function ®2 >

Animate Robot
Function

Figure 2: Simplistic overview of the desired model.

Background (Lagrangian Dynamics):

Opposing the use classical mechanics, Lagrangian mechanics can be used to solve complex problems regarding the
trajectory of systems of particles. Lagrangian mechanics were touted by Lagrange himself as being simple Analytical
Mechanics requiring little geometrical or mechanical reasoning, instead being derived only with algebraic means.
This differentiates Lagrangian mechanics from the classical Newtonian mechanics which are based on vectors and on
the concept of forces. Lagrangian forces do not present new laws of physics, but instead express Newton’s laws of
motion in an alternate form that permits easy algebraic manipulation when working with complex particle ensembles.

Eueler-Lagrange Method (energy based approach):
When approaching dynamics modeling for robots, a Newton-Euler method revolves around balancing forces and
torques, whereas a Lagrange-Eueler method uses an energy-based approach. In robotics, each joint is generalized as

a”q” (either an angle # or some other transformable variable). The Lagrangian (as follows) can be thought of as a
Kinetic Potential.

L(q.q) = K(q,4) — V(q,4) (Lagrangian)

From the Lagrangian we can generate the Euler-Lagrange Equation.

d 0L OL

£(%> 7 =7 (Euler Lagrange Eqn)

The Euler Lagrange Equation summarizes the involvement of forces generated because the limb ¢; is moving, and

forces generated because the limb ¢; is somewhere in space. %(g—;) brings into account the limb’s velocity (q;)

and therefore kinetic energy. g—; brings into account potential energy by involving the limb’s position (g;). These
9 P

latter involvements are considered the result of robot’s ”pose”, whereas the prior were results of the robot’s movement.

To simulate the dynamics for an entire robot, the Euler Lagrangian Equation can be applied to each link of the
robot. The beauty of Lagrangian Dynamics is that they will intrinsically account for unintuitive concepts that would
take a very astute classical mechanist to incorporate. For example, a joint that isn’t changing place or speed can
still require changes in torque (7) because of alterations in the pose of the robot (in other joints or limbs). Think
of supporting a heavy weight held in your hand by the shoulder vs at arm length. Despite the only difference in
position being movement from the elbow joint, the application of torque to the shoulder joint can vary dramatically
based off the pose.

Generalized Coordinates:
Generalized coordinates are a minimal set of variables ¢1, ¢o... that describe the position of the system completely.
They are (x,y,z) for a linear system, (r,0,z) for a system in polar coordinates or (6, ¢,r) for a system in spherical
coordinates. Generalized coordinates along with their rate of change gives the state of the system at
any point. For the single link rotary inverted pendulum, the generalized coordinates are the 2 joint angles ¢; and

qz.

Simulation with Simple Matrix Algebra:
To properly simulate and control the robot, we only have one selectable input: torque (7) which we control by
modulating motor input voltage (V). To determine what voltage or torque needs to be input, we first need to find
angular acceleration («). Recall that:
T

a=< (Rotational Motion from Newton’s Second Law)

Assume u(V) to be the input voltage, and X to the state of the system defined by the position of the two limbs,
along with their first derivatives (velocity).

u(V) (Input f(voltage))

q1

X = gl (Input States Vector)
2

G2

Dynamics

1/s

Figure 3: Basic Model Overview.

Using a similar model as shown in figure 3, where integration as a means of finding states leaves X’ containing
the second derivative of position (ie: angular acceleration «). With values for ¢, ¢, andg at each moment in time, and
the derived equations for torque or voltage that came from Lagrangian Dynamics, it is possible to use basic matrix
algebra to implement a simulation for the two limb robot.

mia] | 2] + o] | 2]+ [ra@0) + [ot0)] = |5)

q2

where... m(q) is 2x2 matrix describing the forces due to mass of each limb. The values depend only on the current
pose of the robot, not its motion. For example, m4 ; is the mass of limb 1 with respect to frame 1.

m(q) = [ml,ly m1,2} (Mass Matrix)

m2.1,M2.2
¢(q, q) is a 2x2 matrix describing the centrifugal and Coriolis forces.
f(g1) describes the frictional forces.

9(q) describes the gravitational forces. This is not the force of gravity, it is similar to the resultant torque on a
mass due to the force of gravity which depends on the objects position.

Derivation of Matrices (Summary):

(01 + 62 5in(g2)° 11 + 03 cos(a2) 2 + 202 sin(q2) cos(g2) gz — O sin(2)d2” + b6 = v

0, -0 R,

1k, .k,
0 = 0 7
03 = 05 k}fli,,
0y = 92%
05 = 1 + krky
96 = 52 k{,{av

01 = Jy +ma(ly +/(l2))?
6‘5 = lmgl%

05 = sma(ly + 1)l

0y = mal(cz)

05 cos(g2) 1 + B2 — B2 sin(gz) cos(q2)g1* — Bagsin(gz) + Osgz = 0

61 + 2 sin(g2)? 65 cos(ga)
M(q) =

03 cos(gz) 02
204 sin(gz2) cos(g2)qigz —03sin(g2)ga
—05 sin(gz) cos(qa2)q1 Os

0541
flq) =
0

0

019 sin(gz)

[m(q)] {ql} + [e(q,9)] {q}} + [f(@)] + [9(9)] = m

q2

Derivation of Matrices (Long Math):

From the final equation here we can produce the matrices needed for simulation. To see this math (which picks
up right where this ends), one can jump right to the summary section that came previously titled Derivation of
Matrices (Summary).

Implementation:

Simulink Model:

a =i
4 ¥_dot
Constant ————— fon
Simulate
5 1
b ector_of thetss = - i —
ff\ector_of_thetaslg——— Qi -
plotter o
Kriirita Select just g1 and g2 Integratar

Figure 4: Implemented Simulink Model.

10

Simulation Block Contents:
This block takes the current state of the system, as defined by the position rate of change of the two generalized
coordinates and spits out the derivative of the state of the system: velocity and angular acceleration. It uses
theoretical parameters 6; — 6.

function x_dot = fcn (v, x)
gl = x(1);
a2 = x(3);

gl_dot = x(2);
g2-dot = x(4);

m2 = 0.14;
Ll1.L2_prime = 0.2;
L2 = 0.3;

L2c = 0.15;
bl = 0.015;
b2 = 0.002;
kt = 0.00767;
kv = 0.00767;
kn = 0.00767;
kr = 70;

kg = 70;

Ra = 2.6;

Ru = 2.6;
grav = 9.81;

thetal_ prime = J1l + m2% (L1_L2_prime”2);

theta2_prime = 1/3+xm2+L2"°2;

theta3_prime = 1/2+m2+«L1_L2 _primexL2;

thetad4_prime = m2+L2c;

thetal = thetal_-primexRa/ (krxkt);

theta2 = theta2_prime*Ra/ (krxkt);
()

)

’

theta3 = theta3_primexRa/ (krxkt
theta4 = theta4d_prime*Ra/ (krxkt
theta5 = bl*Ra/ (krxkt)+kr*kv;
theta6 = b2xRa/ (krxkt);

’

Forces due to mass, depends on position of robot

= [thetal+thetal2« (sin(g2)) "2 theta3xcos(g2);
theta3xcos (g2) theta2];

Centrifugal and coriolis forces

= [2+theta2xsin(g2) xcos (g2) xg2_.dot -theta3xsin(g2)xg2_dot;
—theta2*sin(g2) *cos (g2) xgl_-dot thetab];

Frictional forces

= [thetabxgl_dot;
01;

% Gravitational forces

G = [0;
thetadxgrav*sin(g2)];

acceleration

g-dd = [qgl_dd;

% g2-dd];

% velocity

g-d = [gl-dot;

g2_dot];

= oe

o

Q

oe

o3|

[

% Mxg-dd+Cxg-d+F+G = [v; 0] invalid line of code, just for reference
g-dd = inv (M) % (-Cxg_-d-F-G+[v;0]);
x_dot = [g-d(l),qg-dd(1l),qg-d(2),g-dd(2)];

end

11

Animation Block Contents:
This block takes the two positional values ¢; and go and plots them.

function plotter (vector_of_thetas)

vector_of_thetas = vector_of_thetas';

$Frame #0 x, y and z coordinates for the limb in frame #0. (robot base)
$Ex: the 2nd point of the base is (x0(1),y0(1),z0(1)) = (0,0,-10)

x0 = [0 0];

y0 = [0 0];

z0 = [0 -107];

$Frame #1 x, and z coordinates for the limb in frame #1. (middle arm)

x1l = [0 0 0 0 0];
yl = [0 0 6 6 8];
zl = [0 -1 -1 0 0];
$Frame #2 x, y and z coordinates for the limb in frame #2. (swing arm)
x2 = [0 0];
y2 = [0 12];
z2 = [0 01;
thetal = vector_of_thetas (1l);

theta2 = vector_of_thetas (2);
axis([-10 10 -10 10 -10 101]);

$Transform points of the middle arm from Frame 1 to Frame 0
middle_arm_pts_-in.FO = zeros(3,length(xl));
for i=l:length(x1)

middle_arm_pts_-in_.FO(:,1i) = trans0O.l_.day6(x1(i), y1(i), zl(i),thetal);
end

$Transform points of swing arm from Frame 2 to Frame 0O
swing_arm_pts_in_F1l = zeros(3,length(x2));
swing_arm_-pts_-in_FO = zeros(3,length(x2));
for j=1l:length (x2)

$transform pts from Frame 2 to Frame 1

swing-_arm_pts_-in_F1l(:,j) = transl_-2.day6(x2(j), yv2(j), z2(j),theta2);
$transform pts from Frame 1 to Frame 0
swing-arm_pts_-in_FO0(:,j) = transO0.l_.day6 (swing.arm_pts_-in_F1(1,3j), swing-arm-pts_-in_F1(2,7j), swing]
end
$plot all limb pts (base, middle & swing arms) transformed in Frame 0
hold off;
% plot base
plot3([0 0], [0 O], [0 -101);
%$reset plot parameters
title('Animated Robot in Frame 0');
xlabel ('x");ylabel('y');zlabel('z");
axis([-10 10 -10 10 -10 10]);
grid on;
hold on;
$plot middle arm
plot3(middle_arm_pts_-in_.FO(1l,:)',middle_arm_pts_-in_.F0(2,:)"',middle_arm_pts_-in.FO0(3,:)"',"'r");
$plot swing arm
plot3(swing_.arm_-pts_-in_.FO(1l,:)', swing_arm_-pts_in_FO0(2,:)"',swing_arm_pts_in_F0(3,:)"',"'k");
%plot End effector
plot3(swing._arm_pts_in_F0(1,length(x2))',swing_.arm_pts_in_FO0 (2, length(x2))"',swing_arm_pts_in_FO0 (3, leng

end

arm-pts-in.

th(x2)) ", 'c

12

