
Two-Axis Robot Animator MATLAB

Task Objectives:
We will use MATLAB to create a 2-axis robot simulation, find the robots work envelope, and use the Quanser
Pendulum to test the simulation. We will create a function that, provided values for two D.O.F. (the two angles on
our bot), will animate the robot in the provided orientation/position described by the two D.O.F. inputs. We will
eventually add functionality to truly simulate movement (including physical forces acting on the robot), but for now
we will be creating an animation function for universal position input. Later we can use this animation function to
animate positional values generated by our simulation.

Figure 1: Simple overview of task objective.

Background (Terminology):

Links:
When representing robots, it is easiest to break the structure into multiple links. A link is a single degree of freedom
(D.O.F.). It is a variable we can specify.

Types of Links:

1. rotary (can spin)

2. prismatic (sliding, linear fashion movement)

Using links it is possible to break down higher degree joints (like a ball joint) into multiple links/models occupying
the same space.

Forward Kinematics:
Definition: Specifying the joint values to accomplish a robot move to a new configuration in space.
This means one is able to tell the location of the end effector by the current state of all D.O.F. in the model. For
example, to locate something in 3 dimensions 6 D.O.F. are required (3 for translation, 3 for rotation/orientation).
Increasing beyond 6 D.O.F. provides ”redundancy,” which is the existence of multiple sets/solutions of joint values
that lead to the same final robot orientation. Redundancy by definition is not necessary, but it can be useful.

Inverse Kinematics:
Definition: Solving a mathematical model of the robot kinematics to determine the necessary joint values to move
the tool to a desired target (frame) in space.
This is the answer to the question... Given a spot in ”World Space,” what must the D.O.F. values be for the robot?

Singularity:
Definition: A robot singularity occurs when robot axes are redundant (more axes than necessary to cause the same
motion) and the robot finds itself in a certain configuration that yields multiple solutions to the same movement.
Mathematically, this can be determined by finding the situations where the inverse jacobian formulation (used to
relate motion in joint space to motion in World or Cartesian space) becomes singular (determinant = 0). (source:
http://eaal.groups.et.byu.net/html/RoboticsReview/body_robotics_review.html)

Work Envelope:
Definition: The mapping of all the possible points that the robot’s end effector can touch.

1

http://eaal.groups.et.byu.net/html/RoboticsReview/body_robotics_review.html


Background (Transformation):

Frames
For many situations, it can be easiest to think of each limb of the robot in its own frame of reference. A frame of
reference can be thought of as a coordinate space (Cartesian, polar, cylindrical, spherical etc.) with defined unit
directions and a defined orientation. Frames for different limbs can overlap, but in the cases where they don’t we
require a method of transforming the coordinates in one frame to coordinates in another frame. If we can convert
coordinates in any frame to a single world frame, then mapping movements of the robot becomes much more intuitive.

For our simple two-axis system, we have 3 frames. They are shown in figure 2.

Figure 2: 3 Frames for 2 axis robot.

Frames can differ by 2 factors: location and orientation. These result from translational shifts of the origins of
the frames and rotation of certain frames about any axis.

Transforming coordinates (Translation):
Besides the case where two frames are identical, the simplest transformation is one in which two frames are in identical
orientations but the origin of one is in a different location than the other. Transforming coordinates between the two
frames in this case is as simple as vector addition. If the coordinates of a point in frame 1 must be represented as
coordinates in a frame 0, then summing the vector from the origin of frame 0 to the origin of frame 1 with the vector
from the origin of frame 1 to the point in frame 1’s space... the result is the coordinate of the point represented in
frame 0. This simple example is shown in figure 3.

Figure 3: Simple translation example between two identically oriented but translated frames.

2



Transforming coordinates (Translation & Rotation):
The second form of transformation that must be accounted for is orientation. Frames can be rotated on any axis
into different orientations compared to other frames. Although representing translated coordinates in other frames
is a relatively easy task even with pen and paper, accounting for cascaded rotations can quickly become infeasible
to do by hand with simple math. It is easier to account for both rotation and translation at the same time using
Matrix Algebra.

Generalized Homogeneous Transformation Matrix or G.H.T.M.:
Function:
G.H.T.M. (denoted iTj) is a matrix used to convert coordinates in one frame (frame ”j”) to a representation in
another frame (frame ”i”). The use of the G.H.T.M. is as simple as multiplying a vector of coordinates from one
frame by the matrix, producing a resultant vector of transformed coordinates. For example, for any point in frame
#1, multiplying by 0T1 yields the point represented in frame #0. Such transformation matrices can be multiplied
to convert from one frame to a distant frame. For example, 0T1 ∗1 T2 =0 T2 Understanding the make up of the
G.H.T.M. is important to understanding its function.

Form:
For 3 dimensional coordinate systems, the G.H.T.M. is a square 4x4 matrix comprised of 3 separate components.
These include a Rotation matrix, a coordinate vector [P1,P2,P3] that describes the vector translation between the
origins, and a filler vector with a scaling factor.

Figure 4: Composition of the Generalized Homogeneous Transformation matrix.

3



Rotation Vector:
Given an angle of rotation in one frame, the Rotation Matrix (denoted iRj) uses unit cosine vectors to convert the
rotation to a value in another frame. It does this by individually calculating the projections of each axis in one frame
onto every axis of the other frame. Take for example the Rotation Matrix 0R1, describing the translation between
frames shown in figure 5.

Figure 5: Two differently oriented frames, one rotated w.r.t. the other.

The matrix 0R1 =

 0 1 0
−1 0 0
0 0 1

 describes the relative rotation between frames 0 and 1 in figure 5.

The 1st column of 0R1 represents how much of the x1 axis projects onto the 3 axes x0, y0, z0.
The 2nd column of 0R1 represents how much of the y1 axis projects onto the 3 axes x0, y0, z0.
The 3rd column of 0R1 represents how much of the z1 axis projects onto the 3 axes x0, y0, z0.
The 3x3 matrix iRj makes up iTj [1:3,1:3], as outlined in figure 4.

Denavit-Hartenberg Notation:
For the two axis robot model, the Generalized Homogeneous Transformation Matrix can formed as follows: (Note,
c = cosine, s = sine and θ is provided in radians.)

Figure 6: Parameters for the two axis G.H.T.M.

Figure 7: The populated G.H.T.M. for a two axis robot.

4



Defining all points of the robot in their initial respective frames:
Simply define the x,y and z coordinates of each point in each limb.

%Origin coordinates for frames 0, 1 and 2
origin 0 = [0,0,0];
origin 1 = [0,0,0];
origin 2 = [0,0,0];

%Frame #0 x, y and z coordinates for the limb in frame #0. (robot base)
%Ex: the 2nd point of the base is (x0(1),y0(1),z0(1)) = (0,0,-10)
x0 = [0 0];
y0 = [0 0];
z0 = [0 -10];

%Frame #1 x, and z coordinates for the limb in frame #1. (middle arm)
x1 = [0 0 0 0 0];
y1 = [0 0 6 6 8];
z1 = [0 -1 -1 0 0];

%Frame #2 x, y and z coordinates for the limb in frame #2. (swing arm)
x2 = [0 0];
y2 = [0 12];
z2 = [0 0];

Drawing the base of the robot in FRAME-0:
The base of the robot is easy to draw as a simple line. It will be stationary, is symmetrical about its axis and its
origin is the same as the origin of the 1st arm. Therefore we don’t really treat it as its own limb, instead we treat it
as a stationary variable that we draw every animation frame.

%%%%%%%%%%%%%%%%%% Task #1: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%3d plot of the base of the robot in frame 0.
figure;
plot3(x0, y0, z0) %Plot the Base
title('Frame 0, plot of the robot base');
xlabel('x'); ylabel('y'); zlabel('z');
axis([-10 10 -10 10 -10 10]);
grid on;

Figure 8: Output of the Task #1 Code, draws the robot base.

5



Drawing the first link of the robot in FRAME-1:
The first link of the robot has the following points in FRAME-1: (0,0,0),(0,0,-1),(0,6,0), and (0,8,0).

%%%%%%%%%%%%%%%%%% Task #2: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%3d plot of the first link (middle arm) of the robot in frame 1.
figure;
plot3(x1, y1, z1) %Plot the middle arm
title('Frame 1, plot of the middle robot arm');
xlabel('x'); ylabel('y'); zlabel('z');
grid on;

Figure 9: Output of the Task #2 Code, draws the middle arm of the robot.

Similarly, one could draw the isolated swing arm in a similar fashion (but in FRAME-2).

Converting Points Representing the First Link (middle arm):
Here is a function in MATLAB to convert a point (3d coordinate) given in FRAME-1 to a coordinates in FRAME-
0 using the G.H.T.M. and an input angle indicating the rotation between the x0 and x1 directions about the z1
direction (as defined in Figure 1).

function [pts] = trans0 1(P1x, P1y, P1z, theta1)
%inputs:

%P1x: x coordinate of a point in Frame 1
%P1y: y coordinate of a point in Frame 1
%P1z: z coordinate of a point in Frame 1
%theta1: rotation angle between X 0 & X 1 directions about the Z 1 direction

%Transforms the input coordinates (P1x,P1y,P1z) from Frame 1 into
%coordinates for Frame 0, using the Generalized Homogeneous Transformation
%Matrix (G.H.T.M.)

%Actual G.H.T.M.
T0 1 = [cos(theta1) -sin(theta1) 0 0;

sin(theta1) cos(theta1) 0 0;
0 0 1 0;
0 0 0 1];

%Note: column 4, rows 1-3 of the G.H.T.M have value 0 because there is no
%translation between the origin of frames 0 and 1. ie: the origins are
%identical.

temp = T0 1*[P1x; P1y; P1z; 1];
P0x = temp(1);
P0y = temp(2);
P0z = temp(3);
pts = [P0x,P0y,P0z]; %tranformed points now in Frame 0
end

6



Converting Points Representing the Second Link (swing arm):
Similarly here is a function in MATLAB to convert a point (3d coordinate) given in FRAME-2 to a coordinates in
FRAME-1 using the G.H.T.M. and an input angle indicating the rotation between the x1 and x2 directions about
the z2 direction (as defined in Figure 1).

function [pts] = trans1 2(P2x, P2y, P2z, theta2)

%inputs:
%P2x: x coordinate of a point in Frame 2
%P2y: y coordinate of a point in Frame 2
%P2z: z coordinate of a point in Frame 2
%theta2: rotation angle between X 1 & X 2 directions about the Z 2 direction

%Transforms the input coordinates (P2x,P2y,P2z) from Frame 2 into
%coordinates for Frame 1, using the Generalized Homogeneous Transformation
%Matrix (G.H.T.M.)

%define G.H.T.M. parameters between Frame 2 and Frame 1
a 1 = 0; %distance from Z 1 to Z 2 along X 1
alpha 1 = -pi/2; %angle from Z 1 to Z 2 about X 1
d 2 = 8; %distance from X 1 to X 2 along Z 2

%Actual G.H.T.M.
T1 2 = [cos(theta2) -sin(theta2) 0 a 1;

sin(theta2)*cos(alpha 1) cos(theta2)*cos(alpha 1) -sin(alpha 1) -sin(alpha 1)*d 2;
sin(theta2)*sin(alpha 1) cos(theta2)*sin(alpha 1) cos(alpha 1) cos(alpha 1)*d 2;
0 0 0 1];

temp = T1 2*[P2x; P2y; P2z; 1];
P1x = temp(1);
P1y = temp(2);
P1z = temp(3);
pts = [P1x,P1y,P1z]; %tranformed points now in Frame 1
end

Drawing the entire robot in FRAME-0:
Now that there are functions to transform the points of each limb from their respective frame’s to FRAME-0, it is
possible to draw the entire robot in FRAME-0 (note this requires using both trans0 1 and trans1 2 for converting
between FRAME-2 and FRAME-0).

Figure 10: All Robot Limbs plotted in FRAME-0 after transforming their coordinates.

7



Simulating/Animating the Robot Given Input θ Values:
By defining a vector of values for theta1 and theta2 (the rotations of the middle and swing arms respectively) it is
possible to write a function that animates the movement of the robot along the path of values by stepping through
each transition.

%%%%%%%%%%%%%%%%%% Task #5: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Set of desired position values for theta1 (1st row) and theta2 (2nd row)
theta vec = [linspace(0,6*pi,100); linspace(0,6*pi,100)];
[rows,num of theta vals] = size(theta vec);

%create a 3d animation of the entire robot given the set of desired
%position values held in theta vec
figure;
title('Animated Robot in Frame 0');
xlabel('x');ylabel('y');zlabel('z');
for index = 1:num of theta vals

theta1 = theta vec(1,index);
theta2 = theta vec(2,index);

axis([-10 10 -10 10 -10 10]);

%Transform points of the middle arm from Frame 1 to Frame 0
middle arm pts in F0 = zeros(3,length(x1));
for i=1:length(x1)

middle arm pts in F0(:,i) = trans0 1(x1(i), y1(i), z1(i),theta1);
end

%Transform points of swing arm from Frame 2 to Frame 0
swing arm pts in F1 = zeros(3,length(x2));
swing arm pts in F0 = zeros(3,length(x2));
for j=1:length(x2)

%transform pts from Frame 2 to Frame 1
swing arm pts in F1(:,j) = trans1 2(x2(j), y2(j), z2(j),theta2);
%transform pts from Frame 1 to Frame 0
swing arm pts in F0(:,j) = trans0 1(swing arm pts in F1(1,j),

swing arm pts in F1(2,j), swing arm pts in F1(3,j),theta1);
end

%plot all limb pts (base, middle & swing arms) transformed in Frame 0
hold off;
% plot base
plot3([0 0], [0 0], [0 -10]);

%reset plot parameters
title('Animated Robot in Frame 0');
xlabel('x');ylabel('y');zlabel('z');
axis([-10 10 -10 10 -10 10]);
grid on;
hold on;

%plot middle arm
plot3(middle arm pts in F0(1,:)',middle arm pts in F0(2,:)',

middle arm pts in F0(3,:)','r');
%plot swing arm
plot3(swing arm pts in F0(1,:)',swing arm pts in F0(2,:)',

swing arm pts in F0(3,:)','k');
%plot End effector
plot3(swing arm pts in F0(1,length(x2))',swing arm pts in F0(2,length(x2))',

swing arm pts in F0(3,length(x2))','g*');

pause(0.03); %control speed of animation.
end

8



Defining the Work Envelope:
Given the D.O.F. of the robot, the end effector can reach all points on a partial spherical shell. The radius of this
sphere is defined by the hypotenuse of the triangle formed by the middle and swing arms. The points of cutoff for
the upper and lower hemispheres is the length of the swing arm.

%%%%%%%%%%%%%%%%%% Task #6: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
limb 1 length = y1(5);
limb 2 length = y2(2);
radius = sqrt(limb 1 lengthˆ2+limb 2 lengthˆ2);

num pts = 40;
[X,Y,Z] = sphere(num pts);
[rows,cols] = size(Z);
bottom = 1;
top = rows;
for i=1:rows
if (Z(i,1)<=(-limb 2 length/radius))

bottom = i;
end

end

X = X(bottom:end-bottom,:); %# Keep points in this z value range
Y = Y(bottom:end-bottom,:); %# Keep points in this z value range
Z = Z(bottom:end-bottom,:); %# Keep points in this z value range

figure;
mesh(radius.*X,radius.*Y,radius.*Z,'EdgeColor','black');
% surf(radius.*X,radius.*Y,radius.*Z,'EdgeColor','black');
alpha(.1);
axis equal;

Figure 11: Plotted Work Envelope of the Robot.

9



Animate the Robot w/ a Work Envelope Overlay:
Plot all the previous elements together.

%%%%%%%%%%%%%%%%%% Task #6 graphed all together: %%%%%%%%%%%%%%%%%
%create a 3d animation of the entire robot given desired position values held in theta vec
figure;
title('Animated Robot in Frame 0');
xlabel('x');ylabel('y');zlabel('z');
for index = 1:num of theta vals

theta1 = theta vec(1,index);
theta2 = theta vec(2,index);

axis([-10 10 -10 10 -10 10]);

%Transform points of the middle arm from Frame 1 to Frame 0
middle arm pts in F0 = zeros(3,length(x1));
for i=1:length(x1)

middle arm pts in F0(:,i) = trans0 1(x1(i), y1(i), z1(i),theta1);
end

%Transform points of swing arm from Frame 2 to Frame 0
swing arm pts in F1 = zeros(3,length(x2));
swing arm pts in F0 = zeros(3,length(x2));
for j=1:length(x2)

%transform pts from Frame 2 to Frame 1
swing arm pts in F1(:,j) = trans1 2(x2(j), y2(j), z2(j),theta2);
%transform pts from Frame 1 to Frame 0
swing arm pts in F0(:,j) = trans0 1(swing arm pts in F1(1,j),

swing arm pts in F1(2,j), swing arm pts in F1(3,j),theta1);
end

%plot all limb pts (base, middle & swing arms) transformed in Frame 0
hold off;
% plot base
plot3([0 0], [0 0], [0 -10]);

%reset plot parameters
title('Animated Robot in Frame 0');
xlabel('x');ylabel('y');zlabel('z');
axis([-10 10 -10 10 -10 10]);
grid on;
hold on;

%plot middle arm
plot3(middle arm pts in F0(1,:)',middle arm pts in F0(2,:)',

middle arm pts in F0(3,:)','r');
%plot swing arm
plot3(swing arm pts in F0(1,:)',swing arm pts in F0(2,:)',

swing arm pts in F0(3,:)','k');
%plot End effector
plot3(swing arm pts in F0(1,length(x2))',swing arm pts in F0(2,length(x2))',

swing arm pts in F0(3,length(x2))','g*');
%plot the work envelope
mesh(radius.*X,radius.*Y,radius.*Z,'EdgeColor','black');
alpha(.1);
pause(0.03); %control speed of animation.

end

10



Figure 12: Robot Animation overlaid with the work envelope.

Simulating/Animating the End Effector Path:
By defining a vector of transitional values between

%%%%%%%%%%%%%%%%%% Task #X Follow Movement %%%%%%%%%%%%%%%%%

%create a 3d animation of the entire robot given the set of desired
%position values held in theta vec
figure;
title('Animated Robot in Frame 0');
xlabel('x');ylabel('y');zlabel('z');
End effector pts = zeros(3,1);
for index = 1:num of theta vals

theta1 = theta vec(1,index);
theta2 = theta vec(2,index);

axis([-10 10 -10 10 -10 10]);

%Transform points of the middle arm from Frame 1 to Frame 0
middle arm pts in F0 = zeros(3,length(x1));
for i=1:length(x1)

middle arm pts in F0(:,i) = trans0 1(x1(i), y1(i), z1(i),theta1);
end

%Transform points of swing arm from Frame 2 to Frame 0
swing arm pts in F1 = zeros(3,length(x2));
swing arm pts in F0 = zeros(3,length(x2));
for j=1:length(x2)

%transform pts from Frame 2 to Frame 1
swing arm pts in F1(:,j) = trans1 2(x2(j), y2(j), z2(j),theta2);
%transform pts from Frame 1 to Frame 0
swing arm pts in F0(:,j) = trans0 1(swing arm pts in F1(1,j),

swing arm pts in F1(2,j), swing arm pts in F1(3,j),theta1);
end

%plot all limb pts (base, middle & swing arms) transformed in Frame 0
hold off;
% plot base
plot3([0 0], [0 0], [0 -10]);

%reset plot parameters
title('Animated Robot in Frame 0');
xlabel('x');ylabel('y');zlabel('z');
axis([-10 10 -10 10 -10 10]);
grid on;
hold on;

%plot middle arm
plot3(middle arm pts in F0(1,:)',middle arm pts in F0(2,:)',

middle arm pts in F0(3,:)','r');
%plot swing arm

11



plot3(swing arm pts in F0(1,:)',swing arm pts in F0(2,:)',
swing arm pts in F0(3,:)','k');

%plot End effector
End effector pts(1:3,index)=[swing arm pts in F0(1,length(x2))';

swing arm pts in F0(2,length(x2))';swing arm pts in F0(3,length(x2))'];
plot3(End effector pts(1,:),End effector pts(2,:),End effector pts(3,:),'g');
%plot the work envelope
pause(0.03); %control speed of animation.

end

Figure 13: Robot Animation with end effector trace.

12



Test the Simulation Using Simulink, Quanser Pendulum and Previously Written Functions:
To test the proper functioning of the transformation and simulation code, two tests methods were implemented with
prepared values for input θs. First simple sine wave inputs were generated in Simulink and fed into the animation
code written previously but altered slightly to animate each instance at a time. For the second test, the pendubot was
moved by hand and a Simulink program read the position values from the encoders in the robot’s servos indicating
the position of each limb. These measured values for θ1 and θ2 were fed directly into the same altered animation code
as the first test. The output animation matched the movements of the robot that were generated by hand perfectly
because the inputs were measured values not calculated. Unfortunately this doesn’t allow us to entirely simulate the
robot (without measuring values) based off input voltage alone because the code still lacks the dynamics of physics
considerations. These additions will come later.

13


