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David Young 

CLAB #2: Ion Channels 

1. Problem #1 

clc; clear all; close all; 

load actdata; 

load deactdata; 

  

% Problem 1 

  

V_act=(actdata(1,2:end)); % isolate the voltage protocol 

t_act=(actdata(2:end,1)); % isolate the time 

I_act=(actdata(2:end,2:end)); % isolate the currents 

figure(1); 

for x = 1:24; 

  plot(t_act,I_act(:,x)); % plot I vs t for all voltages on same graph 

  hold on; 

end 

title('Figure 1: Activation Current (nA) vs Time (ms) at Voltages from -150 to 80 mV'); 

xlabel('Time (ms)'); 

ylabel('Activation Current (nA)'); 

hold off; 

  

V_deact=(deactdata(1,2:end)); % isolate the voltage protocol  

t_deact=(deactdata(2:end,1)); % isolate the time 

I_deact=(deactdata(2:end,2:end)); % isolate the currents 

figure(2); 

for x = 1:31; 

  plot(t_deact,I_deact(:,x)); 

  hold on; 

end 

title('Figure 2: Deactivation Current (nA) vs Time (ms) at Voltages from -250 to 50 mV'); 

xlabel('Time (ms)'); 

ylabel('Deactivation Current (nA)'); 

 

Activation data: 

The values between -150 and 80 seem to be relative to the Nernst potential for Potassium.  The first 

figures show that potentials below 0 are producing negative currents (this normally would only happen 

for potentials below that of Ek…. So it must be that 0 is a referenced Ek).  The eqns given seem to 

indicate this would be the case.  

During the time the voltage is held at a value (ie: <20ms) the potassium ions flow into or out of the cell 

according to the equilibrium potential for potassium.  They flow out in magnitude proportional to the 

number of open channels which depends on the voltage (it’s a voltage gated channel) where lower 

voltages produce fewer open channels.  Ie: for membrane voltages held above the value of Ek, the 

potassium flows outward (positive deflection) but for values below that of Ek, the potassium flows 

inward (negative deflection) but these are weaker since fewer channels are open.  Since the membrane 

is held constant at a voltage (between -150 and 80) there is no actual membrane repolarization or 

depolarization occurring during the 20ms period… however the induced currents are attempting to 

counter the effects of the voltage maintenance to move the potential toward Ek.  For the membrane 

voltages less than Ek, the potassium flow is depolarizing… whereas for membrane voltages greater than 

Ek, the potassium flow is repolarizing.  
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After 20ms, the potassium ions are flowing into the cell (negative deflection) attempting to depolarize 

back toward Ek. The tail currents quickly return to 0 because when voltage maintenance is removed… 

the voltage gated channels are closing.  Ions only flow while the channel is open, and that only happens 

at higher voltages.  Therefore the channel current will stop abruptly, only continuing as long as the 

channel can remain open from some faint left over voltage from the maintenance (which quickly goes 

away).  The initial amplitude of the tail current provides a means of comparing the amount of potassium 

conductance activated during the step.  

Deactivation 

In the first 20ms, when Vm is held at 50mV, the voltage gated channels are all open and Vm is greater 

than Ek… so the potassium ions flows outward to attempt to repolarize the membrane.  At the lowest 

dropped voltage the potassium ions flow into the cell, attempting to depolarize the membrane (but they 

quickly drop off because of the closing channels (without voltage to open them).  The highest voltages 

produce a net outward ion flow congruent with the initial conditions during the 20ms period.  

Membrane voltage is positive and therefore the channels are open permitting flow.  The flow is outward 

to attempt to repolarize membrane potential toward Ek.   

2. Problem #2: 

%problem 2 

%find maximum(negative)tail current at each activation voltage 

[rows,cols] = size(I_act); 

P_o = zeros(1,cols); 

for i=1:cols 

    P_o(i) = min(I_act(:,i)); 

end 

P_max = min(P_o); 

normalized_Prob = P_o/P_max; 

figure; 

hold all; 

plot(V_act,normalized_Prob,'o'); 

title('Best Fit: Po/Pmax vs. Voltage (mV)'); 

ylabel('normalized Probability (Po/Pmax)'); xlabel('Voltage (mV)'); 

%BestFit:%General model: 

%      f(x) = (a_o.*exp(z_a.*x))./((a_o.*exp(z_a.*x))+(b_o.*exp(-z_b.*x))) 

% Coefficients (with 95% confidence bounds): 

       a_o =    -0.04768;  %(-1.471e+05, 1.471e+05) 

       b_o =    -0.01967;  %(-6.07e+04, 6.07e+04) 

       z_a =    -0.08504;  %(-1.787e+04, 1.787e+04) 

       z_b =       0.142;  %(-1.787e+04, 1.787e+04) 

% remember that z_a and z_b here include the factors F/RT... must remove 

% them obtain actual z_a and z_b 

x = V_act; 

bestFit = (a_o.*exp(z_a.*x))./((a_o.*exp(z_a.*x))+(b_o.*exp(-z_b.*x))); 

plot(x,bestFit); grid on; 

 

A researcher would look at the behavior of the current through channels immediately following a 

voltage drop because if all the tail currents occur at the same dropped voltage… the initial amplitude of 

the tail current provides a means of comparing the amount of potassium conductance activated during 

the step.  This process requires no assumption that channels obey ohms law…. And since the channels 

deviate slightly from ohms law, this is a good technique.    It allows us to quantify conductance of the 

potassium channels. 
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The best fit eqn for Po was found to be as follows:  

%General model: 
%      f(x) = (a_o.*exp(z_a.*x))./((a_o.*exp(z_a.*x))+(b_o.*exp(-z_b.*x))) 
% Coefficients (with 95% confidence bounds): 
       a_o =    -0.04768;  %(-1.471e+05, 1.471e+05) 
       b_o =    -0.01967;  %(-6.07e+04, 6.07e+04) 
       z_a(F/RT) =    -0.08504;  %(-1.787e+04, 1.787e+04) 

∴z_a = 0.6856 
       z_b(F/RT) =       0.142;  %(-1.787e+04, 1.787e+04) 

 ∴z_b = 0.4939 

 
% Goodness of fit: 
%   SSE: 0.01183 
%   R-square: 0.997 
%   Adjusted R-square: 0.9965 
%   RMSE: 0.02432 

Normalized open probability Po/Pmax relates to the conductance through the channel because….      The 

graph of open probability over a range of voltages shows the voltage dependence of the open 

probability of the channel.  Since the open probability of the channel supplies a means of comparing the 

likelihood of the channel being open (and therefore conducting)… it factors into the conductance of the 

channel.  A channel could be a good conductor, but if it never opens it won’t conduct.   

 

 

Figure 1: Plot of open probability vs voltage for each of the activation currents, 
with best fit.  
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3. Problem #3: 

%problem 3: 

%calculate what 63% of the max value is, then find value in current vector 

%that is >= to that and get its index.... then get that indice's value out 

%of the time vector.... remember to subtract off the bit of time before any 

%rise 

  

% index_10mV = find(10==V_act); 

% index_80mV = find(80==V_act); 

  

  

tau(:,1)=V_act(10<=V_act)';  %make the first column of tau matrix the voltage values 

for i=find(10==V_act):find(80==V_act) 

    I_at_tau = 0.63*max(I_act(:,i)); %the value of the current at the time constant... ie 63% of 

max 

    index_1 = find(I_act(:,i) > 0.0001 ,1); 

    index_2 = find(I_act(:,i) >= I_at_tau ,1);  

    tau(i+1-find(10==V_act),2) = t_act(index_2)-t_act(index_1);  %place the time constant into 

the array next to its associated voltage 

end 

  

figure; 

plot(tau(:,1),tau(:,2),'o'); 

title('Time Constants for Activation Time Course (positive current)');xlabel('Test Potential 

(mV)');ylabel('Time Constant'); 

 

 

 

Problem 3.2: The graph shown uses a best fit 

with an eqn that is a combination of 2 

exponentials.  Given that this is a single 

channel model, and there are 2 exponential 

eqns, I would expect 2 states.  So the two-state 

model for this channel seems valid.   

 

 

 

 

4. Problem #4: 

%problem 4 
for i=0:7 

    I(i+1) = max(I_act(:,i+17)); 

end 

my_N_gamma = I./(normalized_Prob(17:24).*V_act(17:24)); 

avg_Ngamma = mean(my_N_gamma); 

display('My N*Gamma is: '); 

display(avg_Ngamma); 

  

% %  

Figure 2: Rising time constants as a function of voltages that produce 
positive current flow. 
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% Problem 4 

% Use these parameters for the normal model 

a_o=.345; 

b_o=.1865; 

z_a=.02564; 

z_b=.01847; 

% make changes to a_o and/or b_o here to test the model 

a_o_new=.345; 

b_o_new=10*.1865;  

  

time(1:1000) = 0:.02:19.98; % Create a time vector in ms stepping by .1 ms 

time(1001:1525)=0:.02:10.48; % restart time at the repolarization moment 

timeplot=0:.02:30.48; % this is a continuous time vector for use in the plot 

Va=-150; % starting value for activation voltage 

Ngamma = 0.2007; 

  

figure(8); 

% I don't recommmend that you change anything in this for loop. 

for p=1:24 

    % First create the voltage protocol 

    Vhold=-80; % resting voltage 

    Vrepol=-80; % repolarization voltage 

     

    Vpro(1:40)=Vhold; % first part of voltage protocol: resting voltage 

    Vpro(41:1000)=Va; % middle of protocol; activation voltage, which varies from -150 to 80 

    Vpro(1001:1525)=Vrepol; % last part of voltage protocol: repolarization voltage 

    

    alpha_model=a_o*exp(z_a*Vpro); % creates a new alpha using the voltage protocol 

    alpha_new=a_o_new*exp(z_a*Vpro); % creates alpha using your modification 

     

    beta_model=b_o*exp(-z_b*Vpro); % creates a new beta using the voltage protocol 

    beta_new=b_o_new*exp(-z_b*Vpro); % creates beta using your modification 

     

    tau_model = 1./(alpha_model+beta_model); % creates a tau for the model 

    tau_new = 1./(alpha_new+beta_new); % creates modified tau 

     

    Po_ss_model = alpha_model./(alpha_model+beta_model); % steady state Po for this model 

    Po_ss_new = alpha_new./(alpha_new+beta_new); % creates modified Po steady state 

     

    % the next lines create the open probability vector in both conditions at the activation 

    % voltage only, which is (1-exp(t/tau)*Po_steadystate)) 

    Po_model(1:1000)=(1-exp(-time(1:1000)./tau_model(1:1000))).*Po_ss_model(1:1000); 

    Po_model_new(1:1000)=(1-exp(-time(1:1000)./tau_new(1:1000))).*Po_ss_new(1:1000); 

    % the next line creates Po at the repolarization voltage.   

    % the initial condition of Po is taken to be the same as it was just 

    % before the repolarization occurred 

    % first create the initial conditions 

    Po_initial = Po_model(1000)*((exp(-time(1001:end)./tau_model(1001:end)))); 

    Po_initial_new = Po_model_new(1000)*((exp(-time(1001:end)./tau_new(1001:end)))); 

     

    % the open probability now needs to have initial conditions 

    Po_model(1001:1525)=((1-exp(-

time(1001:end)./tau_model(1001:end))).*Po_ss_model(1001:end))+Po_initial; 

    Po_model_new(1001:1525)=((1-exp(-

time(1001:end)./tau_new(1001:end))).*Po_ss_new(1001:end))+Po_initial_new; 

     

    I_model(:,p)=Ngamma*Po_model.*Vpro; % this creates the current data 

    I_model_new(:,p)=Ngamma*Po_model_new.*Vpro; 

     

    plot(timeplot,I_model(:,p),'b-',timeplot,I_model_new(:,p),'g-');  

    hold on 

    Va=Va+10; % advance to the next voltage protocol parameter 

end 

  

% change the title here to reflect your changes 

title('Figure 8: Test of model parameters with beta = 10x normal beta:'); 

xlabel('Time (ms)'); 

ylabel('Activation current (nA)'); 

legend('Normal', 'Modified'); 

  

display('Their N*Gamma is: '); 
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display(Ngamma); 

The Ngamma provided was 0.2007μS…. the Ngamma I calculated was 0.1977 μS,  which is only 1.49% 
error off.   
αo seems to be linked with the activation time constant, whereas βo seems to be linked with the 
inactivation time constant.  Increasing αo decreases Ƭactivation and increases magnitude of activation 
steady state but greatly decreases magnitude of deactivation steady state (see figure 3).  Decreasing αo 
increases Ƭactivation and decreases magnitude of activation steady state but increases deactivation steady 
state (see figure 4). 
Increasing βo decreases magnitude of activation steady state increases magnitude of inactivation steady 

state, and decreases Ƭin-activation (see figure 5).  Decreasing βo increases magnitude of activation steady 

state, greatly decreases magnitude of deactivation steady state and increases Ƭin-activation (see figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Increased alpha 
Figure 4: Decreased alpha 

Figure 5: Increased Beta  
Figure 6: Decreased Beta 
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5. Problem #5 

dO/dt = αC-βO, where C = 1 - O 

dO/dt = α(1-O)-βO = α – (α+β)O 

For general form dX/dt = A-Bx  

general soln 1/(A-Bx)dx=dt 

integrate for ln(A-BX) +C = -Bt  

∴ dX/dt = A-BX = Ce-Bt 

∴ dO/dt = (constant)e-(α+β)t = α – (α+β)O 

∴ O = (α/(α+β)) – (constant)e-(α+β)t 

i. O @ t=inf goes to zero 

ii. O @ t = 0 goes to (Oinfinity – constant) because the exponent goes to  1 

iii. ∴ Constant = Oinfinity-O0 

O(t) = Oinf-(Oinf-O0)e
-t/tau where tau=1/(α+β)   [this is the time constant for the system to 

relax toward equilibrium Po 

α = αoexp(zαFV/RT)   & β = βoexp( - zβFV/RT) 

Since C+O=1,  Po=O/(C+O) = O   

∴ Po= α/(α+β)[1-e-t/tau],   where tau=1/(α+β) 

Simplify Pinf = α/(α+β) 

α/(α+β) = 1/[1+( βoexp(-zβFV/RT)/ αoexp(zαFV/RT))] 

α/(α+β) = 1/[1+βo/(αoexp((zα+zβ)(FV/RT)))] 

Substitute  

Answer…. Po = 1/(1+(βo/αo)exp[-(zα+zβ)FV/RT]) [1-exp(t/tau)] 

Discussants: 

Satish, Paras Vora, Lauren Bedell, Maeve Woeltje, Mathew Everett 


