
Test Results Analyzer Plugin Extension

CS-427 Final Project

Team Spartacus

December 2015

Contents

1 Introduction 2
1.1 Project Goals . 2
1.2 Test Results Analyzer Plugin . 2

2 Architecture Background: Test Results Analyzer Plugin 3
2.1 Backend . 3
2.2 Frontend . 3

3 Obtaining Source Code 4

4 Defined User Stories 4

5 Design & Implementation 5
5.1 Frontend Tables . 5
5.2 Backend Data . 5
5.3 Filtering . 6
5.4 Extra . 8

6 Usage 9

1

1 Introduction

1.1 Project Goals

The Test Results Analyzer Plugin extension was completed for the final assignment of course CS427-
Software Engineering at University of Illinois Urbana Champaign. The purpose was to modify/extend
an existing Jenkins plugin using the ”Extreme Programming” software development methodology as
a team of 8 people. More specifically the selected project goal was defined as follows:

Create/improve a dashboard to track individual test failures/passes over time. Jenkins
currently shows an aggregate view of all the tests in a project, in terms of number of
passing/failing tests. The aim in this project is to create a finer-grained view whereby
developers may track the history of a single test over time to show its pass/fail history.

1.2 Test Results Analyzer Plugin

The ”Test Results Analyzer Plugin” was chosen as the starting point for the final project. The plugin
is avilable here:

https://wiki.jenkins-ci.org/display/JENKINS/Test+Results+Analyzer+Plugin

The Test Results Analyzer Plugin is a Jenkins plugin that shows history of test execution results in
a tabular format. Specifically the plugin works with freestyle projects using JUnit tests.

Figure 1: Test Results Analyzer Plugin default output.

Reasons for selecting the plugin as the base for extension were as follows:

• The plugin appeared simple.

• Team Spartacus was already familiar with Junit.

• The popularity of the plugin was rising.

2

2 Architecture Background: Test Results Analyzer Plugin

2.1 Backend

Representing Data
Jenkins source represents an abstract ”result” with a class called CaseResult. The test results analyzer
plugin uses Jenkins to retrieve all of the CaseResults for every build of the project. These case results
are then read into a custom backend structure. The method by which the plugin creates this custom
backend is a bit convoluted. There is an abstract class called ResultData which holds all the data
for any type of result as fields, with getters and setters to modify said fields. This abstract class is
constructed by sublcasses for each of the result data types (plugin, class, test). The constructor of
each sublcass simply populates the fields of the abstract class.

Retrieving the Data
The frontend of the plugin is primarily javascript, limiting communication between the frontend and
backend. The custom backend structure has methods to represent the data in a universal JSON format
acceptable by the frontend. The abstract class (ResultData) contains the methods for retrieving the
data as a JSON object, but since different subtypes populate different data fields the method is
verbose. Retrieving the JSON this way creates JSON objects with many key-value pairs that have
null values.

2.2 Frontend

.jelly Files
The plugin’s main HTML page is setup with a .jelly file. Jelly is an open and customizable XML
processing engine, and in this case the .jelly file can be treated almost like a glorified HTML file.
Notably, the jelly file imports necessary javascript files, defines the main layout for the HTML page
of the plugin (ie: placement of buttons and major divs etc.), and sets up any button actions/function
calls for user input.

Handlebars
By default the Test Results Analyzer Plugin has only one major table for visualizing test history.
The .jelly file specifies a locator div for this main history chart, but on load this div is unpopulated.
The plugin works by creating an HTML table and inserting it into the div. To ease the process
of populating a table with variable data, the plugin uses handlebars to create the dynamic HTML.
Handlebars is a minimal HTML templating system that makes it very easy to define variables in
an HTML template and then link a context to populate those variables with data. The template
looks like regular HTML with some embedded handlebars expressions. The context for the variable
data can be literal values or a JSON object. When additional processing is required for a data inser-
tion, handlebars supports custom helper functions to modify the input before inserting in the template.

Any desired tables for the final plugin page are created as handlebar templates and supplied a context
via a JSON object containing all the necessary data from the backend. After the handlebars templates
are linked with their context, raw HTML is generated for the tables and inserted at the appropriate
location in the main HTML page (defined by the .jelly file).

All other frontend processing is handled with javascript.

3

3 Obtaining Source Code

The entirety of the code written for this project can be found at the following repository:

https://subversion.ews.illinois.edu/svn/fa15-cs427/_projects/Spartacus/tags/

FinalSubmission/

4 Defined User Stories

The following user stories were drafted at the beginning of the XP process.

User Story Title # Description
View Specific Test Info 1 Users can click on a result (package, class, test) and

see detailed information about it.

View Stability Statistic 3 Users can see a stability statistic (pass ratio) for any
result given the selected builds.

View Builder ID 4 Users can see the Jenkin’s user id that initiated a
build.

View Assertion Console Output 5 The assertion output (console output of expected/ac-
tual) of a failed test is displayed.

View Exception Type 6 The exception type of a failed test is displayed.

Filter by Build # 7 Users can enter the specific build numbers or a range
of build numbers so that only those builds will be
displayed in the table.

Sort By Stability Statistic 8 Users can sort the main history table by the stability
statistic (pass ratio).

Filter by Builder ID 9 Users can type a csv of jenkins’ or svn usernames
and only builds associated with those usernames will
be displayed.

Filter by Exception Type 10 Users can select a specific exception type from a
list of exceptions types. Only builds that have a
test which fails with that exception type will be
displayed.

View Coverage Information 11 Users can view a table of all the Cobertura coverage
information for the displayed builds.

View Autobuild SVN Commit Username 13 If the build was triggered by an SCM poll, the table
will display the svn username that had committed a
change.

4

5 Design & Implementation

5.1 Frontend Tables

Result Details Table
Goal: To be able to click on a result (row of the main table) and see detailed information about it.
This should be displayed in a new table which presents detailed information about the result (package,
class, test) for all selected builds #’s.

Implementation Overview: A separate div for the table was defined in the .jelly file for the main
HTML page. A custom handlebars template was added to define the layout for the new table (which
varies depending on the hierarchy level of the result type). An on-click for the rows of the main chart
was added. The invoked function populates the new template using the correct JSON object for the
clicked result and then generates the HTML for the table and replaces any HTML currently in the
locator div for the new table.

Special Notes: The context for the details table is a subtree of the main JSON object for the entire
history table. When retrieving this subtree, it must be pulled from the existing HTML as a string
and then built back into a JSON object for the context of the new table. For some reason the
retrieved JSON string has some unnecessary double quotes before and after any brackets. A custom
workaround involved a simple function called ”fixJsonStringify” which removed the double quotes
around the brackets such that the string could be successfully converted to a JSON object.

5.2 Backend Data

Builder Name
Goal: To see the Jenkins user ID and/or SVN user ID that initiated the build

Implementation Overview: A list of causes can be pulled from project builds called in getJsonLoad-
Data. The retrieved causes (which are only caused when a user runs a build from Jenkins), are parsed
to return the list of Jenkins users that caused the run. If the list is empty, the user is subbed with
anonymous. An alternate method was used to extract the SVN commit ID from the build. Formatting
functions were added in order to flag the username’s origin as either SVN or Jenkins. These functions
take the Jenkins usernames and SVN usernames and automatically formats the final output for the
frontend to parse. These methods include addSuffixes() and userNameFormat().

Special Notes: We did many refactorings to make the code cleaner, less repetitious, and more robust
such as adding formatting methods and a mapUsersToBuild method. Because the getJsonLoadData()
method is only called at run-time, it was difficult to test the method from the frontend. Instead,
dummy instances of causes are used to test getUsersFromCauseList(). The tests for addSuffixes,
userNameFormat, and mapUsersToBuild were easy.

Assertion Output
Goal: To view the assertion details (console output of expected/actual) for a failed test.

Implementation Overview: There are two main functions. One to retrieve the expected value and
another to retrieve the actual value using java pattern and matcher classes. When a test failed, the
jenkins stack trace includes the expected and actual values. After using the matcher class, assertion
detail information is retrieved.

Special Notes: We were not familiar with pattern class, so we had to use online resources to learn
about java pattern class.

5

Exception Type
Goal: To see the Exception Type of any failed tests.

Implementation Overview: The exception type is retrieved through the stack trace originally obtained
from TestCaseResultData.java. The first line of the stack trace conveniently contains the exception
type. The stack trace is stripped of any any assertion messages only meaningful for the display of
assertion output, leaving just the exception type.

Special Notes: Because the exception type only pertains to the ”test” result level, the details table
template was modified to only include exception type data if the result was a test.

Pass Ratio
Goal: To calculate a stability statistic (in the form of a pass ratio) of all tests based off the currently
selected build #’s.

Implementation Overview: For each result at any hierarchy level (package,class, test), the implemen-
tation adds up the number of builds that passed and divides by the total number of builds considered.
This produces a ratio of passed

total . The ratio is inserted into the JSON object passed to the front end,
once per hierarchy level. Ie: the ratio is stored with a result, not with a build. Think of a result as a
row in the main table, and a build as a column.

Special Notes: Because the ratio depends on the total number of builds being considered, the calcu-
lation must be performed at runtime and not stored as a constant value in the backend. The code
gets convoluted in how it retrieves the JSON object for the specified builds, but the main entry point
is getJsTree in JsTreeUtil.java. This method creates a giant json object representing all the builds.
A second method called createJSON, from the same class, then extracts from that object only the
builds specified. Therefore the acquisition of the backend JSON data occurs before any calculation
could realistically use info about the selected builds. As a workaround, the calculation was performed
in this createJSON function. This is accomplished by iterating through the considered builds and
tallying those that passed. After the specified builds have been extracted, the statistic for that result
is calculated and inserted into the JSON.

5.3 Filtering

Filter the displayed builds by User ID
Goal: To filter the viewable tests by jenkins’ or svn user ID that triggered the test.

Implementation Overview: The original plan revolved around filtering out the usernames at the highest
level, before even creating the data structure associated with a specific build. However, this function
was being executed before any input was even provided by the user. As a result, it was necessary to
make use of a HashMap that associated all usernames with build numbers they had triggered.

In order to get the user input, a text field was added and the input was passed to the plugin’s backend.
This text field supports a comma separated list of usernames which a custom function then parses
into a list of usernames. With the HashMap of usernames to build numbers it was simple to find the
list of allowed builds and intersect that with any other filters.

Special Notes: We wish we knew there can be multiple users or svn commits for a single build. Once
we learned this, we had to go back and extend our code to display multiple users for a single build.

6

Filter the displayed builds by Exception Type
Goal: To filter the builds based on Exception Type.

Implementation Overview: Data related to the builds and the results of tests are organized in a
hierarchical model. At the top of the hierarchy are the packages, followed by the classes under each
package, ending with the individual test cases within each class. The plugin makes use of a series of Info
objects, one for each level of the hierarchy: PackageInfo, ClassInfo, and TestCaseInfo. Excluding the
TestCaseInfo objects, each hierarchy uses a Map to store elements of the level below it. For example
a PackageInfo object has a Map to store all the ClassInfo objects related to it. Likewise, a ClassInfo
object stores all the TestCaseInfo objects related to it. Information pertaining to the Exception that
occurred is stored at the lowest level: TestCaseInfo. The original plan was to iterate through each
Map to reach that level, and then note the builds in which the desired Exception occurred. Instead
a class was created with a static Map object to map each Exception Type to a set of build numbers
associated with it. Each time a project runs a new build, all the Info objects are reconstructed. At
the construction of each TestCaseInfo object, both the build number and the Exception Type data
are available. Code was added to the constructor of each TestCaseInfo object that would add that
data to the static Map. Not only does this provide a mapping from each Exception Type to the set of
associated builds, but it also tells which Exception Types occurred in the project. This information
was used to make a dropdown menu on the frontend for users to select Exception Types rather than
type them into a dialogue box.

Special Notes: We had some issues where the static Map containing information about the Exception
types was carrying over to other projects. This was because each project had a TestAnalyzerAction
object associated with it, but there was only one Map being used for all projects. The Map was
populated each time a project was built, so it would only contain data on the most recently built
project. To solve this, we added a private Map to TestAnalyzerAction for storing Exception Type
data. Our static map was used to accumulate data for all builds for a project. We then made a deep
copy to assign to the private Map of the TestAnalyzerAction object.

Sorting the Main Table by Pass Ratio
Goal: Filter the main history chart such that the displayed tests under each class were arranged in
the order of increasing Pass Ratio.

Implementation Overview: All other sorting operations were meant to operate on the separate details
table. The pass ratio sorting operation was uniquely targeting the main history chart. For the main
chart this involves sorting the rows. Test rows are sorted underneath their parent class row, while
class rows are sorted underneath their parent package rows etc. Each row in the table is a div, and a
child of the base div for the entire table. Because of this, the sorting order is critical. Packages rows
must be sorted first so that the classes can be placed underneath their rearranged packages, with test
rearrangement coming in last. In that order, each hierarchy level was sorted using the parentname
attribute of the row div and a custom comparator which looked at the pass ratio attribute of the pass
ratio div (the third child of every row div). An additional button

Special Notes: The .jelly file uses $ (a common jquery invocation syntax) for a different purpose.
In the .jelly file, an alternate invocation variable was setup ($j) with the command ”var $j =
jQuery.noConflict()”. After this change, all the normal jquery operations are accessible with $j in
place of $. Unfortunately this was a source of a lot of confusion until the variable change was dis-
covered. Additionally, the base div of the main history table caused a bit of confusion. The history
table uses a container div with the id ”projectoverview”, that is the parent of all other divs. Using
the built in DOM structure to identify parent divs was impossible without reorganizing the table
template. Instead, the ”parentname” attribute of the row divs was used to identify the hierarchy and
accomplish the rearranging. The packaged were all rearranged under the fixed header row, which was
the first child of the base div.

7

For the same reasons the calculation of pass ratio had to be done after the backend data retrieval,
the pass ratio filtering was conducted downstream as well. The decision to filter this statistic in
the frontend was obvious, but made testing difficult. Previously frontend javascript testing was
accomplished by invoking the js with an engine written in java. But this was only performed on js
functions not related to HTML. The issue here is that all the javascript is linked to an HTML document
that cannot be unlinked during testing. Attempts were made to retrieve document elements from an
intermediate parser, passing them directly to the functions to avoid any intelligent interaction between
the javascript and the HTML document. That did not work because all the java parsers for HTML
aren’t actual HTML, but rather pseudo representations of DOM objects that can’t be interpreted
properly by javascript. Additionally the javax engine was unable to recognize any of the jQuery
script. It would load other scripts fine, but the jQuery script likely needs to be linked directly to the
HTML document. Therefore it cannot be loaded without one. After a lot of creative attempts, unit
testing this function in java was infeasible.

5.4 Extra

View SVN Commit UserName
Goal: To display the username of the SVN commit that triggered the build (by Jenkins polling)

Implementation Overview: For each Abstract Build in the Abstract Project, the Causes and Change
Sets are collected and used to get the author of manual builds and svn commits respectively. This
information is mapped to each build then stored in the JSON object.

Special Notes: When we started this User Story, there was no clear way to get svn information from
jenkins, there were multiple classes that had svn information that could be retrieved as functions, but
no clear way to create or access an object of that class. Once we found out that an Abstract Build
contained a Change Set it was easy to get the user from that.

Display Cobertura Coverage Info
Goal: To display basic cobertura coverage information about a test.

Implementation Overview: Handlebars was used to display the coverage information on the front-end.
This required a JSON object that contained the same build numbers as the other tables as well as
the Cobertura coverage information for each build.
An @Javascript function was added to take in the various filter information. Based on this information,
the program only searched for the coverage.xml files that were associated with build numbers that
passed those filters. After that file was found, it was a simple matter of parsing the file and creating
a JSON that contained the information needed for display.

Special Notes: At the start of this project, we had originally planned to find the number of lines
and branches a specific test suite covers and display it in the test details table. However, we learned
that Cobertura only keeps track of how many times a line is hit or branch is taken across ALL test
suites but doesn’t track the rest responsible. This means we had to change our userstory to reflect
this new information. Additionally, we wanted to deserialize a serialized Cobertura file and gather the
information from a single file. This turned out to be a big problem since it would have required digging
into the Cobertura source code to understand how it was serialized and what data was stored within
it. Instead, we parsed the coverage.xml files for each build that Cobertura outputs which contained
all the information we wanted to include.

8

6 Usage

Setup

1. Checkout the Test Results Analyzer source code from the svn repository and build it using mvn
install.

2. Install the generated .hpi file to your Jenkins instance.

3. Create a Freestyle Project. Note: Test Results Analyzer does not operate as expected with
maven builds.

4. As a post-build action, choose ”Publish JUnit test result report” with ”**/target/surefire-
reports/*.xml” as the location for test report XMLs.

5. Similarly, if you wish to view Cobertura coverage, choose ”Publish Cobertura Coverage Report”
with ”**/target/site/cobertura/coverage.xml” as the Cobertura xml report pattern.

6. The plugin itself has no configuration options and should now be selectable from your Freestyle
Project page.

Using the plugin

1. Navigate to the job from the jenkins dashboard and click on the plugin to open the main plugin
page. No tables will be displayed by default.

2. Input the desired build range or leave the field blank to retrieve all builds (note: it is recom-
mended to deal with smaller build ranges when the build count gets high). Hit the get build
report button to create test history charts for the specified builds. Combinations of specified
builds or filters that do not exist will result in a displayed message that indicates no builds have
been selected.

Figure 2: Get a build report for a specified set of builds.

9

3. Use the various buttons in the upper right hand of the page to expand, collapse and sort the
main table.

Figure 3: Left: Use ”Expand All” button to see the build history for all re-
sults. Right: Use the ”Sort By Pass Ratio” button to sort the nested results by
increasing pass ratio.

4. Click on the name of a case result name (located in the 3rd column of any row) to open the
result details table for that package, class or test.

Figure 4: Click result name on the main history table to bring up a test details
table for that result.

5. To further filter the results, use the other input filter boxes and drop down menus under the
text box for build numbers.

Figure 5: Left: Provide a username and hit GetBuildReport to retrieve only the
builds initiated by the specified users. Right: Select an exception type from the
drop down menu and hit GetBuildReport to retrieve only builds that contained
at least one result failure of the specified exception type.

10

6. A cobertura report is automatically displayed underneath any other tables.

Figure 6: A cobertura coverage report is displayed beneath the other tables. It
provides a report summary for any builds specified.

11

