
Digit Classification

Naive Bayes Classifier

David Young, Noah Prince

October 2015

Contents

1 Introduction 2
1.1 Submission Overview . 2
1.2 Problem Definition. 2

2 Background 4
2.1 Learned Models . 4

3 Overview of Source 5

4 Implementation 6
4.1 Representing Digits . 6
4.2 Reading the Data From Files . 6
4.3 Training . 6
4.4 Classifying Test Data . 9
4.5 Acquiring the Confusion Matrix . 9
4.6 Generating Heat Maps . 10
4.7 Tying it All Together . 12

5 Results 13
5.1 Classification Rates By Digit (k=1): . 13
5.2 Confusion Matrix . 13
5.3 Heat Charts of Four Most Confused Numbers 14

6 Analysis & Discussion 18
6.1 Potential Improvements . 18

7 Extending Implementation to Face Detection: 19

1

1 Introduction

1.1 Submission Overview

This writeup summarizes the procedure and results of a maximum a posteriori (MAP) clas-
sification of test digits according to a learned Naive Bayes model. It also contains discussion
of said results and attempts to provide some insight and reflection on the behavior of imple-
mented algorithms. This report was produced for course ”CS-440: Artificial Intelligence”
at University of Illinois Urbana Champaign.

1.2 Problem Definition.

• Features: The basic feature set consists of a single binary indicator feature for each
pixel. Specifically, the feature Fi,j indicates the status of the (i,j)th pixel. Its value is 1
if the pixel is foreground (no need to distinguish between the two different foreground
values), and 0 if it is background. The images in the training set are of size 28*28, so
there are 784 features in total.

• Training: The goal of the training stage is to estimate the likelihoods P (Fi,j | class)
for every pixel location (i,j) and for every digit class from 0 to 9. The likelihood esti-
mate is defined as

P (Fi,j = f | class) =
of times pixel (i,j) has value f in training examples from this class

Total # of training examples from this class
(1)

Likelihoods must be smoothed using Laplace smoothing. Laplace smoothing is a very
simple method that increases the observation count of every value f by some constant
k. This corresponds to adding k to the numerator above, and k*V to the denominator
(where V is the number of possible values the feature can take on). The higher the
value of k, the stronger the smoothing.

• Testing: The implementation here performs a maximum a posteriori (MAP) clas-
sification of test digits according to the learned Naive Bayes model. Suppose a test
image has feature values f1,1, f1,2, ..., f28,28. According to this model, the posterior
probability (up to scale) of each class given the digit is given by

P (class) ∗ P (f1,1|class) ∗ P (f1,2|class) ∗ ... ∗ P (f28,28|class) (2)

• Evaluation: The true class labels of the test images from a testlabels file are used to
check the correctness of the estimated label for each test digit. Performance is reported
in terms of the classification rate for each digit (percentage of all test images of a given
digit correctly classified). Also reported is a confusion matrix. This is a 10x10 matrix
whose entry in row r and column c is the percentage of test images from class r that
are classified as class c. Also included for each digit class, are the test examples from
that class that have the highest and the lowest posterior probabilities according to the
classifier. Think of these as the most and least ”prototypical” instances of each digit
class (and the least ”prototypical” one is probably misclassified).

2

• Odds ratios: When using classifiers in real domains, it is important to be able to
inspect what they have learned. One way to inspect a naive Bayes model is to look
at the most likely features for a given label. Another tool for understanding the pa-
rameters is to look at odds ratios. For each pixel feature Fi,j and pair of classes c1,
c2, the odds ratio is defined as

odds(Fi,j = 1, c1, c2) = P (Fi,j = 1|c1)/P (Fi,j = 1|c2). (3)

This ratio will be greater than one for features which cause belief in c1 to increase
over the belief in c2. The features that have the greatest impact on classification are
those with both a high probability (because they appear often in the data) and a high
odds ratio (because they strongly bias one label versus another).

Four pairs of digits that have the highest confusion rates according to your confusion
matrix are selected. For each pair, the maps of feature likelihoods are displayed for
both classes as well as the odds ratio for the two classes.

3

2 Background

2.1 Learned Models

A learned model can be formed by allowing a program to establish probabilities of a par-
ticular feature given the object under scrutiny is of a certain class. After observing several
objects, the program can then utilize this learned model to classify new objects. An illus-
tration of this process can be seen here:

Figure 1: Learned Model Pipeline

4

3 Overview of Source

Obtaining the source code
The entirety of the code written for this project can be found at the following repository:

https://github.com/dcyoung/DigitClassification

Summary of source code
The following source files were written from scratch. All code is well commented with
Javadocs; it should be no burden to browse for specific details.

Filename Description
AccuracyStates.java Builds and returns confusion matrix and other

statistics.

DigitOrganizer.java Organizes source digits and calculates likelihoods.

Digit.java Holds the pixel and numeral data for a single digit.

FileReader.java Reads properly formatted .txt files into a list of
Digits.

HeatMapGenerator.java Generates a heatmap for the four most confused pairs
in a given confusion matrix.

TestRunner.java Ties all of the above together.

5

4 Implementation

4.1 Representing Digits

A Digit class represents each digit from the files, and consists of that digit’s true value and
it’s image data (a 2D array of 1’s and 0’s).

4.2 Reading the Data From Files

This is done through a function that takes as input a label and image data filename and
returns a list of Digit objects. Using Java’s file scanner, for every digit, It retrieves the true
digit value from the label file, and the data from the image data file. It uses that data to
build an object of Digit class, and add that to the list which it returns.

4.3 Training

The DataOrganizer class takes as input all of the training data. Using the training digits,
this class computes the likelihood of a pixel being ‘1’ given the digit’s true value was of some
class (0 through 9). This is placed in a 2D likelihood array for each class (a likelihood for
every pixel in every class).

Getting the posterior probabilities of a single Digit being each class, then, involves adding
the logs of the likelihood that a pixel has a given feature value (easily computable from the
likelihood array for each class). The class with the maximum posterior probability is the
Digit’s most likely true value, as predicted by the algorithm.

The first task to train is to take all of the Digits in the list provided by the file reader and
group them based on class. A list of digit classes with each entry containing a list of all
Digits for that class is much more convenient to work with. This can be seen here:

1

pub l i c void groupDig i t s () {
3 i n t numDigits = th i s . a l l D i g i t s . s i z e () ;

f o r (i n t i = 0 ; i < numDigits ; i++){
5 groupedDig i t s . get (t h i s . a l l D i g i t s . get (i) . getTrueValue ()) . add (t h i s . a l l D i g i t s .

get (i)) ;
}

7 }

:

With the digits grouped in this way, it is trivial to loop through every digit and calculate the
likelihoods based on the training data in that class. The probability of a pixel (Fi,j) having

value f given a digit class is: P (Fi,j = f |class) = # of times pixel (i,j) has value f in training examples from this class
Total # of training examples from this class

To get the number of times a pixel (I, j) has value f in this case means looping through all
training data for this digit and calculating the sum of the pixel values at (I, j). This can all
be seen in the calculateLikelihoods function:

6

2 pub l i c void c a l c u l a t eL i k e l i h o od s () {
i n t sum ;

4 f l o a t l i k e l i h o o d ;

6 f l o a t k = 25 ; // constant
i n t V = 2 ; //number o f p o s s i b l e va lues a f e a tu r e can take (here binary 0 ,1 so 2

va lues)
8

// f o r d i g i t 0−>9
10 f o r (i n t d = 0 ; d < l i k e l i h o o d s . s i z e () ; d++){

12 // f o r every p i x e l i , j
f o r (i n t i = 0 ; i < 28 ; i++){

14 f o r (i n t j = 0 ; j < 28 ; j++){
// f o r each t e s t img

16 sum = 0 ;
f o r (D ig i t tempDig : t h i s . getGroupedDigits () . get (d)){

18 sum += tempDig . getPixe lData () [i] [j] ;
}

20 //P(F i j = f | c l a s s) = (# of t imes p i x e l (i , j) has value f in t r a i n i n g
examples from th i s c l a s s) / (Total # o f t r a i n i n g examples from th i s c l a s s) .

22

// smooth the l i k e l i h o o d s to ensure that there are no zero counts
24 // Laplace smoothing i s a very s imple method that i n c r e a s e s the

obse rvat ion count o f every value f
// by some constant k . This corresponds to adding k to the numerator

above , and k∗V to the
26 // denominator (where V i s the number o f p o s s i b l e va lues the f e a tu r e

can take on) .
// The h igher the value o f k , the s t r onge r the smoothing

28

l i k e l i h o o d = (f l o a t) ((k+sum) /(k∗V+th i s . getGroupedDigits () . get (d) . s i z e
())) ;

30 l i k e l i h o o d s . get (d) [i] [j] = l i k e l i h o o d ;
}

32 }
}

34 }

:

7

Getting the posterior probability can be seen here:

1

pub l i c double g e tP i x e lL i k e l i h ood (i n t d igClass , i n t pixRow , i n t pixCol , i n t
f ea tureVa l){

3 double l i k e l i h oodP ix e l I sOne = th i s . g e tL i k e l i hood s () . get (d igC las s) [pixRow] [pixCol
] ;

i f (f ea tureVa l == 1){
5 re turn l i k e l i h oodP ix e l I sOne ;

}
7 e l s e {

re turn 1− l i k e l i h oodP ix e l I sOne ;
9 }
}

11

pub l i c ArrayList<Double> g e tP o s t e r i o rP r o b ab i l i t i e s (D ig i t d i g i t){
13 ArrayList<Double> postProbs = new ArrayList<Double>() ;

i n t [] [] testImg = d i g i t . getPixe lData () ;
15 double tempProb ;

double Pi jGivenClass ;
17

// f o r each d igClas s 0−>9
19 f o r (i n t d igC las s = 0 ; d igCla s s < 10 ; d igC la s s++){

tempProb = Math . l og (g e tProbab i l i t yO fD ig i tC l a s s (d igC la s s)) ;
21 // f o r each p i x e l in the test img

f o r (i n t i = 0 ; i < 28 ; i++){
23 f o r (i n t j = 0 ; j < 28 ; j++){

PijGivenClass = Math . l og (g e tP i x e lL i k e l i h ood (digClass , i , j , testImg [i] [
j])) ;

25 tempProb += PijGivenClass ;
}

27 }
postProbs . add (tempProb) ;

29 }

31 re turn postProbs ;
}

:

8

4.4 Classifying Test Data

Test data is classified by choosing the class with the maximum posterior probability (using
the training DataOrganizer) for each digit. This can be seen here:

2 Fi leReader f r = new Fi leReader () ;
S t r ing imgDataFilename = ” d i g i t da t a / t ra in ing image s ” ;

4 St r ing labe lF i l ename = ” d i g i t da t a / t r a i n i n g l a b e l s ” ;
ArrayList<Digit> t r a in ingDataD ig i t s = f r . readDigitData (imgDataFilename ,

labe lF i l ename) ;
6

imgDataFilename = ” d i g i t da t a / te s t images ” ;
8 l abe lF i l ename = ” d i g i t da t a / t e s t l a b e l s ” ;

ArrayList<Digit> t e s tDataDig i t s = f r . readDigitData (imgDataFilename , labe lF i l ename) ;
10

DataOrganizer t ra in ingData = new DataOrganizer (t r a in ingDataDig i t s) ;
12 DataOrganizer testData = new DataOrganizer (t e s tDataDig i t s) ;

14 AccuracyStats s t a t s = new AccuracyStats () ;
f o r (i n t d igC las s = 0 ; d igCla s s < 10 ; d igCla s s++){

16 f o r (i n t i = 0 ; i < testData . getGroupedDigits () . get (d igCla s s) . s i z e () ; i++){
Dig i t d i g i t = testData . getGroupedDigits () . get (d igCla s s) . get (i) ;

18 ArrayList<Double> postProbs = tra in ingData . g e tP o s t e r i o rP r o b ab i l i t i e s (d i g i t) ;
s t a t s . addDatapoint (d igClass , postProbs . indexOf (Co l l e c t i o n s .max(postProbs))) ;

20 }
}

:

4.5 Acquiring the Confusion Matrix

An AccuracyStats class exists to build the confusion matrix. This class takes datapoints
one at a time; where a datapoint consists of a Digit’s actual class and the class predicted by
the maximum posterior probability. A non-normalized confusion matrix, where each entry
is the number of datapoints of a particular value, is updated for every new datapoint. For
example, if a datapoint of actual = 9, classifiedAs = 10 comes through, row 9, column 10
in the non-normalized confusion matrix is incremented by 1.

To build the actual confusion matrix after all data has been processed involves normalizing
the non-normalized confusion matrix by the sum of the value in each row.

addDatapoint can be seen here:

pub l i c void addDatapoint (i n t actual , i n t c l a s s i f i e dA s) {
2 t h i s . confusionMatrixNonNormalized [ac tua l] [c l a s s i f i e dA s]++;
}

:

9

Normalizing can be seen here:

1 pub l i c double [] [] getConfus ionMatr ix () {
// Normalize con fus i on matrix

3 i n t [] rowTotals = new in t [1 0] ;
f o r (i n t i = 0 ; i < rowTotals . l ength ; i++) {

5 f o r (i n t j = 0 ; j < 10 ; j++) {
rowTotals [i]+=confusionMatrixNonNormalized [i] [j] ;

7 }
}

9

double [] [] confus ionMatr ix = new double [1 0] [1 0] ;
11 f o r (i n t i = 0 ; i < 10 ; i++) {

f o r (i n t j = 0 ; j < 10 ; j++) {
13 confus ionMatr ix [i] [j] = 1 .0 ∗ confusionMatrixNonNormalized [i] [j] /

rowTotals [i] ;
}

15 }

17 re turn confus ionMatr ix ;
}

:

It can be noted that the diagonal of this confusion matrix is the correct classification rates
for each class.

4.6 Generating Heat Maps

Here heatmaps are generated for the four highest mis-classified pairs in the confusion matrix
(one using the odds function on both digits, two for the likelihoods of each digit).

The first issue is to programmatically pick out the four highest values from the confusion
matrix. This is done by adding each pair (row, column) in the confusion matrix to a Max
Priority Queue data structure. This priority queue uses the value confusion matrix value
to establish priority. While priority queue implementations exist in java, the comparator to
establish priority had to be built like so:

1 c l a s s ConfusionComparator implements Comparator<Pair<Integer , Integer>>{
double [] [] confus ionMatr ix ;

3

pub l i c ConfusionComparator (double [] [] confus ionMatr ix) {
5 t h i s . confus ionMatr ix = confus ionMatr ix ;

}
7

// Overr id ing the compare method to s o r t the age
9 pub l i c i n t compare (Pair<Integer , Integer> f i r s t , Pair<Integer , Integer> second)

{
double one = confus ionMatr ix [f i r s t . getKey ()] [f i r s t . getValue ()] ;

11 double two = confus ionMatr ix [second . getKey ()] [second . getValue ()] ;
i f (one > two) re turn −1;

13 i f (one < two) re turn 1 ;
re turn 0 ;

15 }
}

:

10

The priority queue was built using this code:

1 Prior ityQueue<Pair<Integer , Integer>> pq = new PriorityQueue<Pair<Integer , Integer
>>(10∗ 10 , new ConfusionComparator (confus ionMatr ix)) ;

f o r (i n t i = 0 ; i < 10 ; i++) {
3 f o r (i n t j = 0 ; j < 10 ; j++) {

// don ’ t i n c lude d iagona l
5 i f (i != j) {

pq . add (new Pair<Integer , Integer >(i , j)) ;
7 }

}
9 }

:

With the priority queue established, the next step is to pop/poll four pairs from the queue
and use them to generate heatmaps. Heatmaps were generated using the Java jheatchart
library. This can be seen here:

2 f o r (i n t i = 0 ; i < 4 ; i++) {
Pair<Integer , Integer> i n d i c e s = pq . p o l l () ;

4 i n t r = i nd i c e s . getKey () ;
i n t c = i nd i c e s . getValue () ;

6 System . out . p r i n t l n (i + ” Using r = ” + r + ” c = ” + c) ;

8 generateHeatMap (l i k e l i h o o d s . get (r) , ”Heat chart f o r r=” + r , ” r=” + r + ”−heat−
chart . png”) ;
generateHeatMap (l i k e l i h o o d s . get (c) , ”Heat chart f o r c=” + c , ”c=” + c + ”−heat−
chart . png”) ;

10

double [] [] odds = getSpec i f i edOdds (l i k e l i h o o d s . get (r) , l i k e l i h o o d s . get (c)) ;
12 generateHeatMap (odds , ”Heat chart f o r odds o f r=” + r + ” vs c=” + c , r + ”−” +

c + ”−odds−heat−chart . png”) ;
}

:

The odds function can be seen here:

2 pub l i c double [] [] ge tSpec i f i edOdds (double [] [] l i k e l i h o od s 1 , double [] []
l i k e l i h o o d s 2){
double [] [] odds = new double [2 8] [2 8] ;

4 f o r (i n t i = 0 ; i < 28 ; i++){
f o r (i n t j = 0 ; j < 28 ; j++){

6 odds [i] [j] = l i k e l i h o o d s 1 [i] [j] / l i k e l i h o o d s 2 [i] [j] ;
}

8 }
re turn odds ;

10 }

:

11

4.7 Tying it All Together

All of these components are tied together in the TestRunner class. This class uses all of the
components to print the classification rates, confusion matrix, and to build the heatmaps.
The printing and heatmap generation can be seen here:

System . out . p r i n t l n (”Confusion Matrix : ”) ;
2 s t a t s . pr intConfus ionMatr ix () ;

4 System . out . p r i n t l n () ;
System . out . p r i n t l n (” C l a s s i f i c a t i o n Rates by d i g i t : ”) ;

6 double [] c l a s sRat e s = s t a t s . g e tC l a s s i f i c a t i o nRa t e s () ;
f o r (i n t i = 0 ; i < 10 ; i++){

8 System . out . p r i n t l n (”Dig i t ” + i + ” : ” + df . format (c l a s sRat e s [i])) ;
}

10 System . out . p r i n t l n (”Average C l a s s i f i c a t i o n Rate Across a l l D ig i t C la s s e s : \n” + df .
format (s t a t s . g e tAve rageC la s s i f i c a t i onRate ())) ;

12 t ry {
HeatMapGenerator hmg = new HeatMapGenerator (s ta t s , t ra in ingData . g e tL i k e l i h ood s ()
) ;

14 } catch (IOException e) {
System . out . p r i n t l n (” Fa i l ed to c r ea t e / save heat maps”) ;

16 e . pr intStackTrace () ;
}

:

12

5 Results

5.1 Classification Rates By Digit (k=1):

• Digit 0: 0.84

• Digit 1: 0.96

• Digit 2: 0.78

• Digit 3: 0.79

• Digit 4: 0.77

• Digit 5: 0.67

• Digit 6: 0.76

• Digit 7: 0.73

• Digit 8: 0.60

• Digit 9: 0.81

• Average: 0.77

5.2 Confusion Matrix

0 1 2 3 4 5 6 7 8 9

0.84 0.00 0.01 0.00 0.01 0.06 0.03 0.00 0.04 0.00 0
0.00 0.96 0.01 0.00 0.00 0.02 0.01 0.00 0.00 0.00 1
0.01 0.03 0.78 0.04 0.01 0.00 0.06 0.01 0.05 0.02 2
0.00 0.02 0.00 0.79 0.00 0.03 0.02 0.06 0.02 0.06 3
0.00 0.01 0.00 0.00 0.77 0.00 0.03 0.01 0.02 0.17 4
0.02 0.02 0.01 0.13 0.03 0.67 0.01 0.01 0.02 0.07 5
0.01 0.07 0.04 0.00 0.04 0.05 0.76 0.00 0.02 0.00 6
0.00 0.06 0.03 0.00 0.03 0.00 0.00 0.73 0.03 0.13 7
0.02 0.01 0.03 0.14 0.02 0.06 0.00 0.01 0.60 0.12 8
0.01 0.01 0.01 0.03 0.09 0.02 0.00 0.01 0.01 0.81 9

13

5.3 Heat Charts of Four Most Confused Numbers

4 and 9
.

Figure 2: c = 4 r = 9 Odds

Figure 3: r = 4 likelihoods Figure 4: c = 9 likelihoods

14

8 and 3
.

Figure 5: c = 8 r = 3 Odds

Figure 6: r = 8 likelihoods Figure 7: c = 3 likelihoods

15

7 and 9
.

Figure 8: c = 9 r = 9 Odds

Figure 9: r = 7 likelihoods Figure 10: c = 9 likelihoods

16

5 and 3
.

Figure 11: c = 5 r = 3 Odds

Figure 12: r = 5 likelihoods Figure 13: c = 3 likelihoods

17

6 Analysis & Discussion

Overall, classification rate was high. Viewing the top confused models, it’s pretty clear the
numbers that are likely to be confused; for example 8 and 9, which are basically a single
stroke apart. The heatmaps help to illuminate this difference.

6.1 Potential Improvements

There are many more accurate models than the Naive Bayes Model; a different model could
yield better results.

There are also better ways to identify features. Is a feature a single pixel, or is it better
identified as a group of pixels? Are there certain pixels that are more important (IE edges
of the number), and in certain areas? Modern digit classifying algorithms likely consider
more than the naive model used here.

Generally, a way to increase accuracy may be to use a different ’k’ for laplacian smoothing.
Through testing, the classifier used k = 1 because it had the best results on average classi-
fication rates. With k=50, average rate was 0.7179. With k=1 it was 0.7711. The average
classification rate with k can be seen here:

18

k rate k rate
1 0.7711 26 0.7385
2 0.7671 27 0.7364
3 0.7630 28 0.7355
4 0.7600 29 0.7313
5 0.7568 30 0.7293
6 0.7567 31 0.7283
7 0.7557 32 0.7273
8 0.7536 33 0.7263
9 0.7546 34 0.7252
10 0.7567 35 0.7263
11 0.7515 36 0.7242
12 0.7514 37 0.7233
13 0.7492 38 0.7231
14 0.7494 39 0.7220
15 0.7484 40 0.7200
16 0.7452 41 0.7210
17 0.7440 42 0.7219
18 0.7449 43 0.7219
19 0.7440 44 0.7210
20 0.7438 45 0.7210
21 0.7450 46 0.7189
22 0.7448 47 0.7189
23 0.7436 48 0.7189
24 0.7426 49 0.7179
25 0.7406 50 0.7169

Table 1: k versus average classification rate

7 Extending Implementation to Face Detection:

The digit classifier worked by treating pre-processed pixels as features, where feature’s indi-
cated a pixel to be either a background, edge or interior pixel of a digit. Probability statistics
about pixel features for the various digit classes (0-9) yielded a classification algorithm. A
simple face detector can be constructed by altering the digit classifier slightly.

Pixels are still features, but instead of a pixel values representing interior, background or
edge, pixels only represent the presence or absence of an edge. Reprocessing face images
with an edge detector and then isolating just the pixels belonging to the edges yields a
simple low resolution matrix format for a face. (See Figure 14)

19

###

###

####

###

###

#

###

####

###

#

#

#

#

#

###

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

##

####

######

###

#####

#

###

#

##

##

####

#

#

############# ######

Figure 14: Example Face Representation

20

For digits, there were 10 classes considered during classification: [0,1,2,3,4,5,6,7,8,9]. With
a comprehensive face dataset that was labeled with detailed information, it would be pos-
sible to conduct face classification similar to the digits. Classes might include gender, race,
different emotions etc. However for a the simple face detector implemented here, there are
only two classes: [Face, Not a Face].

The Digit class was replaced by a Face class that uses a larger matrix to store pixel features
and the true digit value was replaced by a boolean flag indicating a true face. The Fil-
eReader was modified to read faces from the preprocessed text files into Face objects. The
DataOrganizer now separates faces into the two classes (face & not face) instead of the 10
digit classes, and then calculates likelihoods similar to the digit implementation. The Ac-
curacyStats class was modified to support the smaller quantity of classes. The TestRunner
class contains the logic of face detection given the probabilities generated in the DataOrga-
nizer.

The system was trained using a dataset of 451 images. Of those 451 images, 217 were actual
faces, while 234 were not. The results are as follows.

Face NotaFace()
Face 0.93 0.07

NotaFace 0.03 0.97

Figure 15: Confusion Matrix for Face Detec-
tion

Classification Success Rate
Input is a Face 0.9316239
Input is not a Face 0.9677419

Table 2: Success Rate for Face Detection Given Input

The code for this face detector can be viewed on the ”FaceClassifier” branch of the source
repository:

https://github.com/dcyoung/DigitClassification

21

References

22

