
Constraint Satisfaction:
Solving Word Puzzles using Backtracking Search

David Young

October 2015

Contents

1 Introduction 2
1.1 Project Overview . 2
1.2 Problem Definition . 2

2 Background 4
2.1 Constraint Satisfaction Problems . 4
2.2 Backtracking Search . 4

3 Overview of Source 5

4 Backtracking Search: Letter-based Assignment 6
4.1 Defining the CSP . 6
4.2 Solution Implementation . 6
4.3 Puzzle Solution & Search Trace . 8
4.4 Analysis & Discussion . 10

5 Backtracking Search: Word-based Assignment 11
5.1 Defining the CSP . 11
5.2 Solution Implementation . 11
5.3 Puzzle Solution & Search Trace . 13
5.4 Analysis & Discussion . 15

1

1 Introduction

1.1 Project Overview

This writeup summarizes the procedure and results of two particular solutions to a specific
Constraint Satisfaction Problem (CSP). It also contains discussion of said results and at-
tempts to provide some insight and reflection on the behavior of implemented algorithms.
This report was produced for course ”CS-440: Artificial Intelligence” at University of Illinois
Urbana Champaign.

1.2 Problem Definition

I was tasked to solve word puzzles using backtracking search (one of many algorithms for
constraint satisfaction). In these puzzles, an array of letter had to be filled such that certain
subsets of the letters formed words from a given category. An example of a word puzzle
with one possible solution is given below. On the left is the problem definition (represented
graphically), and on the right is one possible solution.

Figure 1: Example Problem Figure 2: Example Solution

In this example, the letters connected to red lines should form a word from the ”furniture”
category and similarly, the letters connected to the green lines should form a word belonging
to the ”clothing” category. All the words have a length of 3 and the list of candidate words
for each category is given in a word list file.

The goal was to implement backtracking search to find all solutions (each puzzle might have
multiple solutions) to a few puzzles defined in text files. An example text file defining a
problem is shown below.

9

emotion: 4, 5, 7

body: 3, 8, 9

adverb: 1, 5, 9

adjective: 2, 3, 9

interjection: 4, 5, 6

verb: 7, 8, 9

Figure 3: Example Puzzle File. First line is the number of letter/indices in the solution.
Each subsequent line represents a category and the indices in the solution associated with
that category.

2

In each input puzzle file, the first line specifies the size of the result array, and the rest of
the file lists the category names and indices of the result array that correspond to the word
of that category. This effectively describes the colored line connections shown in Figure 1.

Two versions of backtracking search are implemented here, one for each of two different
formulations:

1. Letter-based assignment where the array is filled in one letter at a time.

2. Word-based assignment where the array is filled in one word at a time.

3

2 Background

2.1 Constraint Satisfaction Problems

In computer science, Constraint Satisfaction Problems (CSP) are problems defined as a
set of objects whose state must satisfy a set of constraints. CSPs represent the entities
in a problem as a collection of finite constraints over variables, which can be solved using
constraint satisfaction methods.

CSPs use a factored representation for each state: a set of variables, each of which has a
value. The problem is solved when each variable has a value that satisfies all the constraints
on that variable. The big idea behind CSP algorithms is to eliminate large portions of the
search tree by identifying variable & value combinations that violate constraints.

When setting up problems as CSPs, it can be useful to use a standard notation. Most
commonly this involves defining variables, domains and constraints. These are commonly
written as:

• X = set of variables

• D = set of domains (one for each variable) where each domain is a set of allowable
values for a variable

• C = set of constraints specifying allowable combinations of variables

2.2 Backtracking Search

Backtracking search is one of many algorithms for constraint satisfaction that can be used
to solve CSPs. At a high level, backtracking search is basically just depth-first search. In
action, backtracking search chooses values for one variable at a time and backtracks when a
variable has no legal values left to assign. It repeatedly chooses an unassigned variable, and
then tries all values in the domain of that variable in turn, trying to find a solution. If an
inconsistency is detected, the recursive algorithm returns failure, causing the previous call to
try another value. There are many possible modifications to improve performance including
pre-processing done prior to the search or improvements intertwined with the search.

The basic pseudo-code for backtracking search is as follows.

Figure 4: Pseudo code for a recursive backtracking search.

4

3 Overview of Source

Obtaining the source code
The entirety of the code written for this project can be found at the following repository:

https://github.com/dcyoung/WordPuzzleConstraintSatisfaction

Summary of source code
The following source files were written from scratch. All code is well commented with
Javadocs; it should be no burden to browse for specific details.

Filename Description
TestRunner.java Provides examples running the backtracking algo-

rithm on various puzzles.

WordDatabase.java Holds all of the words as hashmap with categories as
keys.

Puzzle.java Holds the data for a puzzle in the form of 2 hash
maps.

WordFileReader.java Reads properly formatted .txt files into a word
database or puzzle structure.

LetterBasedCSP.java Solves a constraint satisfaction problem described by
a puzzle object.

WordBasedCSP.java Solves a constraint satisfaction problem described by
a puzzle object.

A quick summary of the code: The structure and high level pseudo code for both versions of
the backtracking algorithm are nearly identical (see figure 4). The implemented backtrack-
ing algorithm can be found in the method ”recursiveBacktracking()” in both WordBased-
CSP.java and LetterBasedCSP.java). The main difference between the two implementations
is how the helper functions select unassigned variables, order domain values and check if
constraints are violated. The puzzle definition however, remains the same regardless of the
type of constraint solution (letter or word based assignment) used to solve the puzzle. A
puzzle object was created to hold all the information defining an unsolved puzzle. The cho-
sen data structures revolve around 2 hashmaps; the first is used to map between categories
for words and their respective puzzle indices, while the second is used to map between the
puzzle indices of the solution and their respective categories. In this way we have a mapping
of categories – indices and indices – categories.

5

4 Backtracking Search: Letter-based Assignment

4.1 Defining the CSP

Variables, Domains and Constraints
For the letter based assignment, X,D & C were defined as:

• Variables X = index (of the solution array)

• Domain D = permit-able letters for a given variable

• Constraints C = a letter must be able to form a word from a connected category given
previous specified letters

4.2 Solution Implementation

Backtracking algorithm
This is the main constraint satisfaction solver. It effectively conducts depth first search on
the state space of possible assignments for a CSP, halting any dives that violate constraints.
The recursive-backtracking pseudo code returned a result, but here it should look for all
possible solutions. Therefore this implementation returns nothing, while any found solutions
are stored in the instance variable ”results”.

1

pub l i c void Recurs iveBacktrack ing (ArrayList<Character> assignment){
3 i n t index = Se l ec tUnass ignedVar iab l e (ass ignment) ;

f o r (char c : t h i s . OrderDomainValues (index)){
5 // Add i t to the assignment

assignment . s e t (index , c) ;
7 // i f va lue i s c on s i s t e n t with assignment given c on s t r a i n t s

i f (CheckI fCons i s tent (index , ass ignment)){
9 i f (! ass ignment . conta in s (nu l l)) {

// add i t to s o l u t i o n s e t
11 t h i s . r e s u l t s . add (DeepCopyCharArrayList (ass ignment)) ;

} e l s e {
13 // dive deeper in to the t r e e (the passed in assignment here conta in s the

char c)
Recurs iveBacktrack ing (assignment) ;

15 }
}

17 // Remove from assignment , keeping the t r e e at the cur rent depth
assignment . s e t (index , nu l l) ;

19 // removing the charac t e r ensures the next loop i t e r a t i o n i s s ea r ch ing breadth
}

21 }

:

6

Selecting an unassigned variable
A helper function for the main backtracking algorithm, this method selects an unassigned
variable from the assignment. A more efficient implementation would likely consider the
most constrained variable first, in order to fail fast and prune large portions of the search
tree. But, currently, the naive implementation simply looks for the next unassigned index.

1

pr i va t e i n t Se l ec tUnass ignedVar iab l e (ArrayList<Character> assignment){
3 // naive

f o r (i n t i = 0 ; i <assignment . s i z e () ; i++){
5 i f (ass ignment . get (i) == nu l l){

re turn i ;
7 }

}
9 re turn −1;
}

:

Ordering the values in the variable’s domain
A helper method for the main backtracking algorithm, this method returns a domain of pos-
sible values (permit-able letters) for the variable index. For efficiency, it should intelligently
order the domain of possible values for the variable index, but currently the naive method
simply returns the normal alphabet of uppercase characters. This is not efficient, but will
work because the alphabet is finite and the performance impact is minimal considering the
large portion of the alphabet typically included in associated categories.

2 pr i va t e ArrayList<Character> OrderDomainValues (i n t index){
// naive : r e turn a−z s i n c e there w i l l be l o t s o f chars anyways

4 re turn t h i s . a lphabet ;
}

:

Consistency Check
The following consistency check ensures that constraints have not been violated. As outlined
in the CSP definition for letter based assignments, this involves checking that the char c
proposed for the specified index is able to form a word from every connected category given
previous specified letters.

1 pr i va t e boolean CheckI fCons i s tent (i n t index , ArrayList<Character> assignment){
// f o r each category l i nked to the index

3 f o r (S t r ing category : t h i s . puzz l e . getIndexCategoryMap () . get (index)){
St r ing partialWord = GetWordRegEx(category , ass ignment) ;

5 boolean WordExistsInCategory = f a l s e ;
// f o r each word in that category

7 f o r (S t r ing word : db . getWordMap () . get (category)){
// could the p a r t i a l word cons t ruc t word

9 i f (Pattern . matches (partialWord , word)){
WordExistsInCategory = true ;

11 break ;
}

13 }
i f (! WordExistsInCategory)

15 re turn f a l s e ;
}

17 re turn true ;
}

:

7

4.3 Puzzle Solution & Search Trace

Puzzle #1:

9
emotion: 4, 5, 7
body: 3, 8, 9
adverb: 1, 5, 9
adjective: 2, 3, 9
interjection: 4, 5, 6
verb: 7, 8, 9

Puzzle #1 Solution:

(Soln #0: NNEMANDYE) adjective: NEE emotion: MAD interjection: MAN verb: DYE body: EYE adverb: NAE
(Soln #1: NNESAYDYE) adjective: NEE emotion: SAD interjection: SAY verb: DYE body: EYE adverb: NAE
(Soln #2: NWEMANDYE) adjective: WEE emotion: MAD interjection: MAN verb: DYE body: EYE adverb: NAE
(Soln #3: NWESAYDYE) adjective: WEE emotion: SAD interjection: SAY verb: DYE body: EYE adverb: NAE

Puzzle #1 Search Trace

root -> N -> N -> E -> M -> A -> N -> D -> Y -> E (NNEMANDYE)
-> S -> A -> Y -> D -> Y -> E (NNESAYDYE)

-> W -> E -> M -> A -> N -> D -> Y -> E (NWEMANDYE)
-> S -> A -> Y -> D -> Y -> E (NWESAYDYE)

Puzzle #2:

9
pronoun: 1, 3, 9
palindrome: 2, 5, 9
math: 2, 5, 7
interjection: 1, 4, 6
verb:2, 4, 6
noun: 2, 4, 8

Puzzle #2 Solution:

(Soln #0: HSIAIWNCS) palindrome: SIS pronoun: HIS interjection: HAW verb: SAW noun: SAC math: SIN
(Soln #1: HSIAIWNPS) palindrome: SIS pronoun: HIS interjection: HAW verb: SAW noun: SAP math: SIN
(Soln #2: HSIOIWNDS) palindrome: SIS pronoun: HIS interjection: HOW verb: SOW noun: SOD math: SIN
(Soln #3: HSIOIWNYS) palindrome: SIS pronoun: HIS interjection: HOW verb: SOW noun: SOY math: SIN

Puzzle #2 Search Trace

root -> H -> S -> I -> A -> I -> W -> N -> C -> S (HSIAIWNCS)
-> P -> S (HSIAIWNPS)

-> O -> I -> W -> N -> D -> S (HSIOIWNDS)
-> Y -> S (HSIOIWNYS)

Puzzle #3:

7
nature: 1, 4, 5
food: 5, 6, 7
animal: 1, 2, 5
interjection: 2, 3, 5
noun: 4, 6, 7

Puzzle #3 Solution:

(Soln #0: ASULPEA) nature: ALP interjection: SUP animal: ASP noun: LEA food: PEA
(Soln #1: ASULPIE) nature: ALP interjection: SUP animal: ASP noun: LIE food: PIE

Puzzle #3 Search Trace

root -> A -> S -> U -> L -> P -> E -> A (ASULPEA)
-> I -> E (ASULPIE)

8

Puzzle #4:

8
body: 2, 6, 8
pronoun: 1, 2, 7
computer: 1, 4, 5
interjection: 1, 2, 6
verb: 3, 4, 8
noun: 4, 7, 8

Puzzle #4 Solution:

(Soln #0: HEDITYRE) computer: HIT pronoun: HER interjection: HEY verb: DIE noun: IRE body: EYE
(Soln #1: HELITYRE) computer: HIT pronoun: HER interjection: HEY verb: LIE noun: IRE body: EYE
(Soln #2: HETITYRE) computer: HIT pronoun: HER interjection: HEY verb: TIE noun: IRE body: EYE

Puzzle #4 Search Trace

root -> H -> E -> D -> I -> T -> Y -> R -> E (HEDITYRE)
-> L -> I -> T -> Y -> R -> E (HELITYRE)
-> T -> I -> T -> Y -> R -> E (HETITYRE)

Puzzle #5:

9
number: 3, 8, 9
container: 4, 7, 9
music: 3, 7, 8
body: 4, 6, 8
adverb: 5, 6, 9
animal: 2, 8, 9
noun: 1, 6, 9

Puzzle #5 Solution:

(Soln #0: IHTTNOIEN) container: TIN number: TEN music: TIE animal: HEN noun: ION body: TOE adverb: NON
(Soln #1: IHTTYOIEN) container: TIN number: TEN music: TIE animal: HEN noun: ION body: TOE adverb: YON
(Soln #2: THTTNOIEN) container: TIN number: TEN music: TIE animal: HEN noun: TON body: TOE adverb: NON
(Soln #3: THTTYOIEN) container: TIN number: TEN music: TIE animal: HEN noun: TON body: TOE adverb: YON

Puzzle #5 Search Trace

root -> I -> H -> T -> T -> N -> O -> I -> E -> N (IHTTNOIEN)
-> Y -> O -> I -> E -> N (IHTTYOIEN)

-> T -> H -> T -> T -> N -> O -> I -> E -> N (THTTNOIEN)
-> Y -> O -> I -> E -> N (THTTYOIEN)

9

4.4 Analysis & Discussion

Potential Improvements
The implemented algorithm closely follows the pseudo code provided in the background
section, differing only by storing all solutions rather than returning just one. As for the
helper functions, most were left with naive implementations as the time required to solve
the given puzzles was only a few seconds at most. The naive methods are not as efficient in
how they order variables or values, but they return complete and optimal results. That is
to say all valid solutions were found and the algorithm never returned invalid solutions.

To improve the algorithm further, the ordering of unassigned variables could be altered to
prioritize the most constrained variables. With this change, the backtracking algorithm
would try options likely to conflict first, and in doing so eliminate large portions of the
search tree early on. If the goal was to find any solution as rapidly as possible, the ordering
of the values in the variable’s domain would be altered to prioritize the least constrained
value such that more likely components of the solution are attempted first. In this situation
however, the goal was to find all solutions. Therefore the ordering of values was irrelevant.
Lastly, the current implementation does not include any early checking of failure, such as
an arc-consistency check.

Even without these enhancements, for small puzzles this backtracking algorithm is reason-
ably fast.

10

5 Backtracking Search: Word-based Assignment

5.1 Defining the CSP

Variables, Domains and Constraints
For the word based assignment, X,D & C were defined as:

• Variables X = a wordVar

• Domain D = all potential wordVals from the linked category

• Constraints C = for every wordVar, the wordVal assigned to that wordVar must exist
in the wordVal ’s category

Here a wordVar is the three indices linked to a category (as defined by the puzzle definition)
and a wordVal is the assigned letters at the indices linked to a category.

5.2 Solution Implementation

Backtracking algorithm
This is the main constraint solver and again it differs slightly from the pseudo code. Instead
of returning the first result encountered, the algorithm adds every encountered solution to
a running list of results stored in an instance variable.

pub l i c void Recurs iveBacktrack ing (ArrayList<Character> assignment , i n t depth){
2 //wordVar here l o g i c a l l y r e f e r s to 3 ind i c e s , but w i l l be a category

St r ing category = Se l ec tUnass ignedVar iab l e (ass ignment) ;
4

f o r (S t r ing wordVal : t h i s . OrderDomainValues (category)){
6 //Remember the cur rent assignment f o r l a t e r

ArrayList<Character> o ld ass ignment = DeepCopyCharArrayList (ass ignment) ;
8 // Add i t to the assignment

AddToAssignment (assignment , category , wordVal) ;
10

// i f wordVal i s c on s i s t e n t with assignment given c on s t r a i n t s
12 i f (CheckI fCons i s tent (category , ass ignment)){

i f (! ass ignment . conta in s (nu l l)) {
14 //add i t to s o l u t i o n s e t

i f (! Dupl icateResultCheck (assignment)){
16 t h i s . r e s u l t s . add (DeepCopyCharArrayList (ass ignment)) ;

f o r (i n t i = 0 ; i < depth ; i++) {
18 System . out . p r i n t (” ”) ;

}
20 }

} e l s e {
22 // dive deeper in to the t r e e (the passed in assignment here conta in s the

wordVal)
Recurs iveBacktrack ing (assignment , depth+1) ;

24 }
}

26 // Remove from assignment , keeping the t r e e at the cur rent depth
assignment = old ass ignment ;

28 // removing the word ensures the next loop i t e r a t i o n i s s ea r ch ing breadth
}

30 }

:

11

Selecting an unassigned variable
A helper method for the main backtracking algorithm, this returns a category with any
unsigned characters.

2 pr i va t e St r ing Se l ec tUnass ignedVar iab l e (ArrayList<Character> assignment){
// should return a category

4 i n t index = 0 ;
f o r (i n t i = 0 ; i <assignment . s i z e () ; i++){

6 i f (ass ignment . get (i) == nu l l){
index = i ;

8 break ;
}

10 }
re turn t h i s . puzz l e . getIndexCategoryMap () . get (index) . get (0) ;

12 }

:

Ordering the values in the variable’s domain
A helper method for the main backtracking algorithm, this returns a domain of possible
values for a variable. For the word-based assignment, this is relatively simple as the word
database intrinsically provides this information already.

2 pr i va t e ArrayList<Str ing> OrderDomainValues (S t r ing category){
re turn t h i s . db . getWordMap () . get (category) ;

4 }

:

Consistency Check
A helper method for the main backtracking algorithm this checks that a constraint has
not been violated after an assignment. To follow the CSP designed for the word-based
assignment, this means checking that the wordVal proposed for the specified category does
not violate any constraints at indices shared with other categories.

2 pr i va t e boolean CheckI fCons i s tent (S t r ing augmentedCategory , ArrayList<Character>
assignment){
//An e f f i c i e n t s o l u t i o n would check only c a t e g o r i e s l i nked to any index o f the
augmented category

4

// naive , check every category
6 f o r (S t r ing category : t h i s . puzz l e . getCategoryIndexMap () . keySet ()){

St r ing partialWord = GetWordRegEx(category , ass ignment) ;
8 boolean WordExistsInCategory = f a l s e ;

// f o r each word in that category
10 f o r (S t r ing word : db . getWordMap () . get (category)){

// could the p a r t i a l word cons t ruc t word
12 i f (Pattern . matches (partialWord , word)){

WordExistsInCategory = true ;
14 break ;

}
16 }

i f (! WordExistsInCategory)
18 re turn f a l s e ;

}
20 re turn true ;

}

:

12

5.3 Puzzle Solution & Search Trace

The puzzle definitions and their solutions are the same for both versions of the backtracking
algorithm (letter and word based assignments). Therefore, only the traces will be included
here for brevity. One can view the definitions and solutions in the previous section.

Puzzle #1 Search Trace

Search order: adverb -> adjective -> interjection -> verb

root-> NAE -> NEE -> MAN -> DYE(found result: NNEMANDYE)

-> backtrack

-> SAY -> DYE(found result: NNESAYDYE)

-> backtrack

-> backtrack

-> WEE -> MAN -> DYE(found result: NWEMANDYE)

-> backtrack

-> SAY -> DYE(found result: NWESAYDYE)

-> backtrack

-> backtrack

-> backtrack

-> NAW -> NEE -> MAN -> DYE -> backtrack

-> SAY -> DYE -> backtrack

-> backtrack

-> WEE -> MAN -> DYE -> backtrack

-> SAY -> DYE -> backtrack

-> backtrack

-> backtrack

-> backtrack

Puzzle #2 Search Trace

Search order: interjection -> math -> pronoun -> noun

root -> AYE -> DAG -> backtrack

-> backtrack

-> FIE -> DAG -> backtrack

-> backtrack

-> HAW -> SIN -> HIS -> SAC(found result: HSIAIWNCS)

-> SAP(found result: HSIAIWNPS)

-> SOD(found result: HSIOIWNDS)

-> SOY(found result: HSIOIWNYS)

-> backtrack

-> backtrack

-> backtrack

-> HOW -> SIN -> HIS -> SAC -> SAP -> SOD -> SOY -> backtrack

-> backtrack

-> backtrack

-> HUM -> backtrack

-> SAY -> SIN -> backtrack

-> backtrack

-> WOW -> SIN -> HIS -> SAC -> SAP -> SOD -> SOY -> backtrack

-> backtrack

-> backtrack

-> YAY -> SIN -> backtrack

-> backtrack

-> YOW -> SIN -> HIS -> SAC -> SAP -> SOD -> SOY -> backtrack

-> backtrack

-> backtrack

-> YUM -> backtrack

-> backtrack

13

Puzzle #3 Search Trace

Search order: nature -> interjection -> noun

root -> ALP -> SUP -> LEA(found result: ASULPEA)

-> LIE(found result: ASULPIE)

-> backtrack

-> backtrack

-> BOT -> backtrack

-> ZHO -> backtrack

-> backtrack

Puzzle #4 Search Trace

Search order: computer -> body -> verb -> noun

root -> FAX -> backtrack

-> HIT -> EYE -> DIE -> IRE(found result: HEDITYRE)

-> backtrack

-> LIE -> IRE(found result: HELITYRE)

-> backtrack

-> TIE -> IRE(found result: HETITYRE)

-> backtrack

-> backtrack

-> backtrack

-> WEB -> backtrack

-> WWW -> backtrack

-> backtrack

Puzzle #5 Search Trace

Search order: noun -> animal -> music -> body -> adverb

root -> ION -> HEN -> TIE -> TOE -> NON(found result: IHTTNOIEN)

-> YON(found result: IHTTYOIEN)

-> backtrack

-> backtrack

-> backtrack

-> backtrack

-> TON -> HEN -> TIE -> TOE -> NON(found result: THTTNOIEN)

-> YON(found result: THTTYOIEN)

-> backtrack

-> backtrack

-> backtrack

-> backtrack

-> backtrack

14

5.4 Analysis & Discussion

Similar to the letter based solution, the helper functions are mostly naive. While the results
are still complete, and all valid solutions were returned; search time could be improved with
better ordering of variables.

For one, the ordering of the unassigned variables only involved searching through the solu-
tion array for an empty slot; then grabbing the first category associated with that slot. An
improved solution could choose the most constrained category. Figuring which category is
most constrained would likely involve looking at the number of overlaps the category has
with other categories.

Ordering domain values just returns a list of categories. A better solution would organize
domain values by least constraining words. One idea for finding the least constraining word
is to keep a letter count for each index of each category; i.e. category ’x’ has 5 words with
the first letter of ’a’. These numbers could be used to decide which words least constrain
the categories it intersects with.

The consistency check checks the consistency of every category. In reality, only the categories
intersected by the category being assigned need to be checked for consistency. Practically,
given the number of categories and the size of the solution array, this almost always equates
to checking every category. Implementing a smarter consistency check for this problem would
yield little, if any performance advantage. Additionally, the performance for these small
puzzles was not noticeably slow; solutions appeared almost instantaneously after running
the algorithm.

15

