
Adversarial Search: War Game
Minimax and Alpha-Beta Pruning

David Young

October 2015

Contents

1 Introduction 2
1.1 Purpose . 2
1.2 Problem Definition (War Game) . 2
1.3 Project Overview . 5

2 Background 6
2.1 Adversarial Search & Search Agents . 6
2.2 Minimax . 6
2.3 Alpha Beta Pruning . 7

3 Overview of Source 8

4 Implementation (Non-Algorithms) 9
4.1 Reading Info . 9
4.2 Representing Game State . 10
4.3 Playing a Game . 11
4.4 Conducting Searches . 12
4.5 Displaying the Game Graphically . 13

5 Adversarial Search: Minimax 14
5.1 Solution Implementation . 14

6 Adversarial Search: Alpha Beta Pruning 15
6.1 Solution Implementation . 15

7 Results 16
7.1 Results Intro: . 16
7.2 Minimax Depth 3, Alpha Beta Depth 3 . 17
7.3 Minimax Depth 4, Alpha Beta Depth 4 . 19
7.4 Minimax Depth 4, Alpha Beta Depth 5 . 20

8 Analysis & Discussion 21

1

1 Introduction

1.1 Purpose

This writeup summarizes the implementation and results of an adversarial search algorithm.
It also contains discussion of said results and attempts to provide some insight and reflection
on the behavior of implemented algorithms. This report was produced for course ”CS-440:
Artificial Intelligence” at University of Illinois Urbana Champaign.

1.2 Problem Definition (War Game)

The goal of this project was to implement an agent to play a simple ”warfare” game.

Rules of the Game
The rules of the game are defined as follows:

• The game board is a 6x6 grid representing a city.

• Each square has a fixed point value between 1 and 99.

• There are two players, ”blue” and ”green”. Each player takes turns: blue moves first,
then green, then blue, etc.

• Object of the game is to be the player in the end with the largest total value of squares
in their possession. Ie: one wants to capture the squares worth the most points.

• Game ends when all the squares are occupied by players since no more moves are left.

• Movement is always vertical and horizontal but never diagonal.

• Pieces can be conquered in the vertical and horizontal direction, but never diagonal.

• Values of the squares are defined at the beginning of each game, and remain constant.

• In each turn, a player can make one of two moves:

Move Option #1: Commando Paradrop. You can take any open space on the board
with a Para Drop. This will create a new piece on the board. This move can be made as
many times as one wants to during the game, but only once per turn. A Commando Para
Drop cannot conquer any pieces. It simply allows one to arbitrarily place a piece on any
unoccupied square on the board. Once you have done a Para Drop, your turn is complete.

The image below illustrates a Commando Para Drop. In this case, green drops a new piece
on square [C,3]. This square is worth 39, which is a higher number, meaning that it contains
some juicy oil wells or other important resources. After that, the score is green 39 : blue 3.
A Commando Para Drop could have been carried out on any squares except for [D,4] since
blue already occupies it.

2

Figure 1: Example Commando Para Drop Move.

Move Option #2: M1 Death Blitz. From any space you occupy on the board, you
can take the one next to it (up, down, left, right, but not diagonally) if it is unoccupied.
The space you originally held is still occupied. Thus, you get to create a new piece in the
blitzed square. Any enemy touching the square you have taken is conquered and that square
is turned to your side (you turn its piece to your side). An M1 Death Blitz can be done
even if it will not conquer another piece. Once you have made this move, your turn is over.

The image below illustrates an M1 Death Blitz. Green blitzes the piece in [D,4] to [D,3].
This conquers the blue piece in [D,2] since it is touching the new green piece in [D,3]. A blitz
always creates a new piece and always moves one square, but it does not conquer another
piece unless it is touching it. Thus, another valid move might have been for [D,4] to have
blitzed [E,4]. Then the green player would own [D,4] and [E,4] but would have conquered
none of blue’s pieces. Note, the score before the blitz was green 46 : blue 157 but afterwards
is green 113 : blue 149.

Figure 2: Example M1 Death Blitz Move.

Here is another illustration:

3

Figure 3: Another Example M1 Death Blitz Move.

Here blue blitzes [C,3] from [C,2]. In the process green’s pieces at [D,3] and [C,4] are
conquered since they touch [C,3]. Notice that in its next move, green will not be able to
conquer any of blue’s pieces and only the piece at [D,4] would be able to execute an M1
Death Blitz since [D,2] has no neighboring unoccupied squares.

You can assume that blitzing is mandatory: i.e., if you put a piece adjacent to pieces you
already own and you have the opportunity to ”convert” neighboring enemy pieces, you have
to take it.

Game Board Supplied Format
Game boards are defined in basic text files. The text file include 36 integer values, one for
each grid space of the final 6x6 game board. Each number in the .txt file represents the
value of the corresponding grid space. An example game board .txt file might look like this:

66 76 28 66 11 9

31 39 50 8 33 14

80 76 39 59 2 48

50 73 43 3 13 3

99 45 72 87 49 4

80 63 92 28 61 53

Figure 4: Example Gameboard .txt file. Each integer represent the value of a grid space.

4

1.3 Project Overview

The basic task was to implement agents to play the above game, one using minimax search
and one using alpha-beta search. The program used depth-limited search with an evaluation
function. The maximum depth feasible for searching was determined for both agents. (For
reference, the worst-case number of leaf nodes for a tree with a depth of three in this game
is roughly 42,840).

Five different gameboards were supplied for testing. The gameboards are labeled as follows:

1. Keren.txt

2. Narvik.txt

3. Sevastopol.txt

4. Smolenk.txt

5. Westerplatte.txt

For each gameboard tested, the following match-ups were run:

(a) Minimax vs. minimax

(b) Minimax vs. alpha-beta (minimax goes first)

(c) Alpha-Beta vs. minimax (alpha-beta goes first)

(d) Alpha-Beta vs. alpha-beta

For each of the four match-ups, the following statistics were calculated:

• Final state of the board and the total scores for each player.

• Total number of game tree nodes expanded by each player during the game.

• Average number of nodes expanded per move & average amount of time per move.

5

2 Background

2.1 Adversarial Search & Search Agents

In multi-agent environments, each agent must consider the actions of other agents when
planning their own actions. In a competitive multi-agent environment, where all agents are
out to maximize their own welfare, agent’s goals are often in conflict. Such environments
are often abstracted into adversarial search problems. The most basic form of adversarial
search problems are also quite familiar to us. Games!

Here, only games of a specific kind will be considered. That is, games that are deterministic,
turn-taking, two-player, and present perfect information. Ie: agents act alternately with
perfect information about the current state of the environment (fully observable). The
agents compete to end the game with the highest utility; but maximizing utility for one
agent minimizes utility for another. A problem is definably adversarial specifically because
of this quality of opposition between the end utilities.

2.2 Minimax

The minimax algorithm is a way of finding an optimal move in a two player game. The
big idea is to evaluate the utility of the leaf nodes such that each node in the tree can be
assigned a worth value to the maximizing agent (AI player).

Each layer of the tree alternates as a MAX or MIN node. The goal at a MAX node is to
maximize the value of the subtree rooted at that node. To do this, a MAX node chooses the
child with the greatest value, and that becomes the value of the MAX node. Similarly, a
MIN node tries to minimize the value of the subtree rooted at that node, and will choose the
child with the lowest value, and that becomes the value of the MIN node. The MIN/MAX
nodes are analogous to our war game where the MAX player is the one who’s move it is,
and then MIN player is the other player; who will choose the node to minimize the MAX
players utility.

The minimax algorithm takes a root node and moves down the tree until it reaches leaf
nodes (or the maximum permitted depth, for performance reasons). When it reaches such
a stopping condition, it returns a heuristic value that measures or estimates the utility of
the root node to the max player.

The basic pseudo-code for minimax search is as follows.

Figure 5: Pseudo code for basic minimax search.

6

2.3 Alpha Beta Pruning

Alpha-beta pruning is a modification to the minimax search. It still finds the optimal
minimax solution, but does so while avoiding unnecessary searching. It accomplishes the
same task as normal minimax, but reduces the size of the search space by pruning the tree.

Alpha-beta pruning uses two bounds that are passed around in the algorithm. The bounds
restrict the set of possible solutions based on the portion of the search tree that has already
been seen.

• α = maximumlowerboundofpossiblesolutions

• β = minimumupperboundofpossiblesolutions

Therefore, for any node state to be considered as part of the path to a solution, the current
estimate value for that node must fall inside the range bounded by alpha and beta. ie:
α <= estimatevalue <= β

As the algorithm runs, restrictions on the range of possible solutions are updated based on
min nodes (which may place an upper bound) and max nodes (which may place a lower
bound). Moving through the tree, these bounds typically get closer together and eventually
cross, such that beta ¡ alpha. If such a crossing occurs, the range for the node’s value
becomes nonexistent because there is no overlapping region between alpha and beta. In
this circumstance, the node could never belong in a solution path, so the algorithm stops
processing the node meaning it stops generating its children and moves back to the parent
node. The algorithm must still note the value of this node however, so it passes (to the
parent) the value that was changed which caused the crossing of alpha and beta.

The basic pseudo-code for minimax with alpha beta pruning is as follows.

Figure 6: Pseudo code for minimax search with alpha beta pruning.

7

3 Overview of Source

Obtaining the source code
The entirety of the code written for this project can be found at the following repository:

https://github.com/dcyoung/WarGame

Summary of source code
The following source files were written from scratch. All code is well commented with
Javadocs; it should be no burden to browse for specific details.

Filename Description
AdversarialSearch.java Conducts minimax or alpha-beta on a game state.

BoardState.java Holds the state of a game board.

CommandoParaDrop.java Defines a Commando Para Drop move.

DrawingBoard.java Draw the state of the war game dynamically.

GameBoardFileReader.java Reads a file containing initial game board values.

GameStateNode.java Holds the state of the game at a given point.

GridSpace.java Holds info about a grid space on the game board.

M1DeathBlitz.java Defines an M1 Death Blitz Move.

Move.java Abstract move class.

Player.java Holds info about a player.

TestRunner.java Contains basic tests runnable from a static main.

A quick summary of the code:

8

4 Implementation (Non-Algorithms)

4.1 Reading Info

Reading information is done through GameBoardFileReader class, which takes as input the
filename of the game board to be used (in its constructor). This implementation used the
java util Scanner class to fill out the grid values.

The first task is to open the file, this is done in initialization:

1

pub l i c GameBoardFileReader (F i l e f i l e){
3 t ry {

t h i s . sc = new Scanner (f i l e) ;
5 t h i s . g r idVa l s = th i s . readGridVals () ;

t h i s . numGridRows = th i s . g r idVa l s . s i z e () ;
7

i f (t h i s . numGridRows !=0)
9 t h i s . numGridCols = th i s . g r idVa l s . get (0) . s i z e () ;

e l s e
11 t h i s . numGridCols = 0 ;

}
13 catch (FileNotFoundException e) {

System . out . p r i n t l n (” F i l e could not be found . ”) ;
15 e . pr intStackTrace () ;

}
17 }

:

Most of GameBoardFileReader’s functionality comes from readGridVals helper function,
which populates a 2D ArrayList with the integer values of the squares in the game board
file. This code is here:

1

pr i va t e ArrayList<ArrayList<Integer>> readGridVals () {
3 ArrayList<ArrayList<Integer>> tempGridVals = new ArrayList<ArrayList<Integer

>>() ;
i n t l ineCount = 0 ;

5 St r ing tempLine ;
Scanner l ineScan ;

7

whi le (sc . hasNextLine ()){
9 tempLine = sc . nextLine () ;

l i neScan = new Scanner (tempLine) ;
11 tempGridVals . add (new ArrayList<Integer >()) ;

whi l e (l i neScan . hasNextInt ()){
13 tempGridVals . get (l ineCount) . add (l ineScan . next Int ()) ;

}
15 l ineCount++;

}
17 re turn tempGridVals ;

}

:

Once this arraylist is populated, the board is built. Specifically, the BoardState class’ ini-
tializeGrid function handle’s the translation of this arraylist to game state. This is described
in the next section.

9

4.2 Representing Game State

The game’s state is represented using the GameStateNode class. A single instance of game
state contains two Players and a Board State. Players are implemented with the Player
class, and the Board State is represented with the BoardState class.

A Player consists of a player id, the player’s current score, and whether or not that player
is a min or max player.

A BoardState consists of a grid of BoardSpaces; a BoardSpace is a single square in the game.
The BoardSpace class keeps track of it’s index in the BoardState grid, neighboring spaces,
and whether or not it is occupied, and by which player.

Initially building the board state from the read 2D ArrayList of integers is done using this
function:

1 pub l i c void i n i t i a l i z eG r i d (ArrayList<ArrayList<Integer>> i n i t i a lG r i dVa l s){

3 // i n i t i a l i z e the g r id o f spaces with the i n i t i a l g r id va lues
f o r (i n t row = 0 ; row < t h i s . numGridRows ; row++){

5 t h i s . g r id . add (new ArrayList<GridSpace >()) ;
f o r (i n t c o l = 0 ; c o l < t h i s . numGridCols ; c o l++){

7 i n t va l = i n i t i a lG r i dVa l s . get (row) . get (c o l) ;
t h i s . g r id . get (row) . add (new GridSpace (row , co l , va l)) ;

9 }
}

11 t h i s . p o s t I n i t i a l i z eG r i d () ;
}

:

Establishing the neighbors for all of the GridSpaces is done using a postInitialize function:

pub l i c void p o s t I n i t i a l i z eG r i d () {
2 // f o r each g r id space , populate i t ’ s ne ighbor ing spaces array

f o r (ArrayList<GridSpace> row : t h i s . g r id){
4 f o r (GridSpace gs : row){

gs . setNeighbor ingGridSpaces (t h i s . determineGridSpaceNeighbors (gs)) ;
6 }

}
8 }

10 pub l i c ArrayList<GridSpace> determineGridSpaceNeighbors (GridSpace gr idSpace){
ArrayList<GridSpace> ne ighbors = new ArrayList<GridSpace >() ;

12 //add l e f t , top , r ight , bottom
i f (gr idSpace . getCol () != 0)

14 ne ighbors . add (t h i s . g r id . get (gr idSpace . row) . get (gr idSpace . co l −1)) ;
i f (gr idSpace . getCol () != t h i s . numGridCols−1)

16 ne ighbors . add (t h i s . g r id . get (gr idSpace . row) . get (gr idSpace . c o l +1)) ;
i f (gr idSpace . getRow () != 0)

18 ne ighbors . add (t h i s . g r id . get (gr idSpace . row−1) . get (gr idSpace . c o l)) ;
i f (gr idSpace . getRow () != th i s . numGridRows−1)

20 ne ighbors . add (t h i s . g r id . get (gr idSpace . row+1) . get (gr idSpace . c o l)) ;

22 re turn ne ighbors ;
}

:

10

4.3 Playing a Game

The war game is played in the TestRunner class by pitting two search algorithms against
each other, using two Players. Specifically, a single GameState is shared between both Play-
ers, and both Players take alternating moves using their respective search algorithm.

This is all done in a while loop that ends when the shared state hits a leaf node (IE the
board is filled). By keeping a count variable, the runner gives Player1 a move on even
counts, Player2 on odd counts.

The function that gives each player a chance to run their search and select a move is called
getPostSearchedMoveState. This function returns a new state that reflects the player’s
move.

pr i va t e GameStateNode getPostSearchedMoveState (GameStateNode state , boolean
player1Move , boolean useAlphaBeta , i n t mmDepth , i n t abDepth){

2 Player maximizingPlayer ;
i f (player1Move){

4 maximizingPlayer = s t a t e . getPlayer1 () ;
s t a t e . getPlayer1 () . setMaximiz ingPlayer (t rue) ;

6 s t a t e . getPlayer2 () . setMaximiz ingPlayer (f a l s e) ;
}

8 e l s e {
maximizingPlayer = s t a t e . getPlayer2 () ;

10 s t a t e . getPlayer1 () . setMaximiz ingPlayer (f a l s e) ;
s t a t e . getPlayer2 () . setMaximiz ingPlayer (t rue) ;

12 }

14 ArrayList<GameStateNode> ch i l d r en = s t a t e . getNodeChildren (maximizingPlayer) ;
GameStateNode bestChoice = nu l l ;

16 i n t bestValSoFar = In t eg e r .MIN VALUE;
i n t tempVal ;

18

i n t moveExpandedNodes = 0 ;
20 f o r (GameStateNode ch i l d : ch i l d r en){

Adversar ia lSearch mmSearch = new Adver sar ia lSearch (ch i ld , mmDepth , abDepth ,
useAlphaBeta) ;

22 tempVal = mmSearch . conductSearch () ;
moveExpandedNodes += mmSearch . getNumExpandedNodes () ;

24 i f (tempVal > bestValSoFar){
bestChoice = ch i l d ;

26 bestValSoFar = tempVal ;
}

28 }

30 i f (player1Move){
t h i s . expandedNodesWriterP1 . p r i n t l n (moveExpandedNodes) ;

32 }
e l s e {

34 t h i s . expandedNodesWriterP2 . p r i n t l n (moveExpandedNodes) ;
}

36 re turn bestChoice ;
}

:

getPostSearchedMoveState runs a player’s search algorithm for all possible child states of a
node (states where the player has made a legal move), and returns the node of maximum
utility for the player.

Getting all possible child states of a node involves parsing out the illegal moves. For conve-
nience, moves are represented by the abstract Move class. The core of this functionality is

11

accomplished by the getAllowableMoves function. Building out the child states, then, just
involves crating gamestates using the Move declaration. The getAllowableMoves function
is here:

1 pub l i c ArrayList<Move> getAllowableMoves (St r ing playerID , GameStateNode s t a t e) {
ArrayList<Move> al lowableMoves = new ArrayList<Move>() ;

3

// check every g r id space to see i f the p layer can move in to i t
5 f o r (i n t row = 0 ; row < t h i s . numGridRows ; row ++){

f o r (i n t c o l = 0 ; c o l < t h i s . numGridCols ; c o l ++){
7 GridSpace gr idSpace = th i s . g r id . get (row) . get (c o l) ;

// i f the g r id space i s unoccupied
9 i f (! gr idSpace . i sOccupied ()){

//add a new move o f type CommandoParaDrop
11 al lowableMoves . add (new CommandoParaDrop(playerID , gridSpace , s t a t e)) ;

13 //Check i f a b l i t z i s a l lowed
// i f the g r id space has a neighbor that be longs to the moving p layer

15 f o r (GridSpace neighbor : gr idSpace . getNeighbor ingGridSpaces ()){
i f (ne ighbor . i sOccupied ()){

17 i f (ne ighbor . getRes identPlayerID () . equa l s (playerID)){
//add a new move o f type M1DeathBlitz

19 al lowableMoves . add (new M1DeathBlitz (playerID , gridSpace , s t a t e)) ;
break ;

21 }
}

23 }
}

25 }
}

27 re turn al lowableMoves ;
}

:

NOTE: While the search algorithms themselves may reorder child states or even prune
subtrees, this first depth level before the search algorithms are called contains every possi-
ble move. Therefore, a search algorithm of depth n will actually be conducting the search
of depth n on every possible move from the current state. This is effectively a search depth
of n+1. This will be irrelevant for the nodes expanded in minimax, but will yield seem-
ingly high numbers of expanded nodes for alpha beta where the tree depth (in a functional
interpretation) is not being pruned. In reality, the alpha beta search is pruning correctly,
it’s just being run on every child of the first depth. This implementation was chosen to
allow for the search algorithms to return only integer values instead of states. This keeps
the space requirements at a minimum, which is important in such a bloated data-structure
with accessory functionality.

4.4 Conducting Searches

A search is represented by the AdversarialSearch class. This class contains all of the search
algorithms, which will be explained in depth in the next section.

The type of adversarial search is determined by the useAlphaBeta flag, and the depth of
the search is determined by mmDepth (for minimax searches) and abDepth (for Alpha/-
Beta searches). See the previous bolded ”NOTE”, from sub-section 4.3, for clarity on the
meaning of depth here.

A search is performed by calling the conductSearch function, which returns the utility of
the move found by the search.

12

4.5 Displaying the Game Graphically

The game is displayed graphically using StdDraw, a graphical java library. The details
of the drawing are in the DrawingBoard class. Drawing a gamestate involves setting the
DrawingBoard’s internal GameState using a setter method, and then calling the drawCur-
rentBoardState function. The TestRunner uses this interface to update the board after
every move. The class also contains methods to save the draw images after updates, so that
simple .gif animations of saved game play can be created.

13

5 Adversarial Search: Minimax

5.1 Solution Implementation

The Minimax Algorithm

2 pub l i c i n t minimax (GameStateNode root , i n t depthLimit , boolean bIsMaxNode){
// i f the node i s a l e a f node r epor t i t s u t i l i t y ,

4 i f (root . i sLeafNode () | | depthLimit == 0){
// t r e a t deep enough nodes as l e a f nodes (t h i s w i l l be a u t i l i t y es t imate)

6 re turn eva luate (root , bIsMaxNode) ;
}

8 e l s e {
ArrayList<Move> al lowableMoves ;

10 Move move ;
GameStateNode ch i l d ;

12 i n t childMiniMaxValue ;

14 i f (bIsMaxNode){
//n i s a max node

16 i n t miniMaxValue = In t eg e r .MIN VALUE;

18 // get the a l l owab l e moves f o r the cur rent s t a t e
al lowableMoves = root . getAllowableMoves (root . getMaximizingPlayer ()) ;

20 // cons ide r every ch i l d s t a t e r e s u l t i n g from one o f the a l l owab l e moves
f o r (i n t moveIndex = 0 ; moveIndex < al lowableMoves . s i z e () ; moveIndex++){

22 move = allowableMoves . get (moveIndex) ;
c h i l d = root . getChi ldStateAfterMove (root . getMaximizingPlayer () , move) ;

24 // eva luate the ch i l d
t h i s . numExpandedNodes++;

26 childMiniMaxValue = minimax (ch i ld , depthLimit−1, f a l s e) ;
//n i s a max node , i t s minimax value w i l l be the max o f a l l i t s ch i l d r en

28 miniMaxValue = Math .max(miniMaxValue , childMiniMaxValue) ;
}

30 re turn miniMaxValue ;
}

32 e l s e {
//n i s a min node

34 i n t miniMaxValue = In t eg e r .MAXVALUE;

36 // get the a l l owab l e moves f o r the cur rent s t a t e
al lowableMoves = root . getAllowableMoves (root . getMinimiz ingPlayer ()) ;

38 // cons ide r every ch i l d s t a t e r e s u l t i n g from one o f the a l l owab l e moves
f o r (i n t moveIndex = 0 ; moveIndex < al lowableMoves . s i z e () ; moveIndex++){

40 move = allowableMoves . get (moveIndex) ;
c h i l d = root . getChi ldStateAfterMove (root . getMinimiz ingPlayer () , move) ;

42 // eva luate the ch i l d
t h i s . numExpandedNodes++;

44 childMiniMaxValue = minimax (ch i ld , depthLimit−1, t rue) ;
//n i s a min node , i t s minimax value w i l l be the min o f a l l i t s ch i l d r en

46 miniMaxValue = Math . min (miniMaxValue , childMiniMaxValue) ;
}

48 re turn miniMaxValue ;
}

50 }
}

:

14

6 Adversarial Search: Alpha Beta Pruning

6.1 Solution Implementation

1

pub l i c i n t alphaBeta (GameStateNode root , i n t depthLimit , i n t alpha , i n t beta ,
boolean bIsMaxNode){

3 i f (root . i sLeafNode () | | depthLimit == 0){
re turn eva luate (root , bIsMaxNode) ;

5 }
e l s e {

7 // get a l l the a l l owab l e moves f o r t h i s s t a t e
ArrayList<Move> al lowableMoves ;

9 GameStateNode chi ldStateNode ;

11 i f (bIsMaxNode){
// get the a l l owab l e moves f o r the cur rent s t a t e

13 al lowableMoves = root . getAllowableMoves (root . getMaximizingPlayer ()) ;
//n i s a max node

15 i n t miniMaxValue = alpha ;
i n t ch i ldValue ;

17

// cons ide r every ch i l d s t a t e r e s u l t i n g from an a l l owab l e move
19 f o r (i n t moveIndex = 0 ; moveIndex < al lowableMoves . s i z e () ; moveIndex++){

chi ldStateNode = root . getChi ldStateAfterMove (root . getMaximizingPlayer () ,
al lowableMoves . get (moveIndex)) ;

21 // eva luate the ch i l d s t a t e
t h i s . numExpandedNodes++;

23 ch i ldValue = alphaBeta (chi ldStateNode , depthLimit−1, miniMaxValue , beta ,
f a l s e) ;

//n i s a max node , i t s minimax value w i l l be the max o f i t s ch i l d r en
25 miniMaxValue = Math .max(miniMaxValue , ch i ldValue) ;

27 //update alpha and check i f alpha and beta c ro s s ed
alpha = Math .max(alpha , miniMaxValue) ;

29 i f (beta < alpha){
// break ;

31 re turn alpha ;
}

33 }
re turn miniMaxValue ;

35 }
e l s e {

37 al lowableMoves = root . getAllowableMoves (root . getMinimiz ingPlayer ()) ;
//n i s a min node

39 i n t miniMaxValue = beta ;
i n t ch i ldValue ;

41

// cons ide r every ch i l d s t a t e r e s u l t i n g from an a l l owab l e move
43 f o r (i n t moveIndex = 0 ; moveIndex < al lowableMoves . s i z e () ; moveIndex++){

chi ldStateNode = root . getChi ldStateAfterMove (root . getMinimiz ingPlayer () ,
al lowableMoves . get (moveIndex)) ;

45 // eva luate the ch i l d s t a t e
t h i s . numExpandedNodes++;

47 ch i ldValue = alphaBeta (chi ldStateNode , depthLimit−1, alpha , miniMaxValue ,
t rue) ;

miniMaxValue = Math . min (miniMaxValue , ch i ldValue) ;
49 beta = Math . min (beta , miniMaxValue) ;

i f (beta < alpha){
51 re turn beta ;

// break ;
53 }

}
55 re turn miniMaxValue ;

}
57 }
}

:

15

7 Results

7.1 Results Intro:

The results are a response to the project goals, restated here. Five different gameboards were
supplied for testing (Keren, Narvik, Sevastopol, Smolenk & Westerplatte). Each gameboard
was tested on four match configurations of minimax and alpha beta agents (MM vs. MM,
MM vs. AB, AB vs. MM & AB vs. AB). For each of the four match-ups, the following
statistics were calculated:

• Final state of the board and the total scores for each player.

• Total number of game tree nodes expanded by each player during the game.

• Average number of nodes expanded per move & average amount of time per move.

To automate these results, the Adversarial Search class kept a tally of expanded nodes that
was incremented upon each recursive call to a search algorithm. This yielded results for
expanded nodes at every move for both players. Similar statistics were automated for move
times and all the results were compiled in spread sheets.

To see more statistical detail, the included excel spread sheets provide expansions and
durations of individual moves.

NOTE: while the final scores of the included implementations are consistent, they will
most likely vary from other implementations. While the nodes expanded might be similar
for various implementations, the final scores of the players in a game will vary depending
on how tie breakers and evaluation functions were implemented. If all moves equated to the
same utility, different implementations might choose different moves, resulting in different
states later on that affect the outcome of the game. Different evaluation functions could
lead to different choices even without a tie breaker.

NOTE: as previously mentioned, the search algorithms are conducted on the resultant
states of the first possible set of moves. This was a conscious design choice for space
considerations given the functionally large data structures and simplicity of an integer return
type with the search functions. This will yield slightly higher node expansions for the alpha
beta pruning as the first depth layer will not be pruned, but the search algorithm is still
100% effective and optimal from a supplied root node. The root nodes used for searching
just happen to be the game states that result from the first set of allowable moves in the
game state currently occupied by the player.

16

7.2 Minimax Depth 3, Alpha Beta Depth 3

The results of both search algorithms searching to a depth of 3 are shown below.

Figure 7: Adversarial search results for minimax and alpha beta agents both using depth 3.

The first important thing to note here is that the final scores for a puzzle remain the same
regardless of the match up. This is expected, as both minimax and alpha beta should return
the same optimal result provided the same depth of search. So even though the alpha beta
pruning improved on the run time and node expansion, it cannot provide any improved
move selection without searching deeper in the tree. It is not considering anything more
than minimax, just searching the same space more efficiently.

The second noteworthy observation is better seen from the individual move statistics shown
in the excel spread sheets. For a search depth of 3, here is an example number of expanded
nodes per turn for all moves made by a minimax agent during the course of a game:

17

Move # Expanded Nodes

0 48,300

1 48,810

2 45,534

3 42,134

4 31,750

5 25,371

6 18,604

7 14,026

8 12,160

9 8,462

10 7,293

11 5,184

12 2,996

13 1,945

14 1,166

15 520

16 144

17 4

Figure 8: Example Gameboard .txt file. Each integer represent the value of a grid space.

The worst case number of leaf nodes for a depth 3 search tree in War Game is 42,840.
The total number expanded will of course be bigger than the number of leaf nodes, as
the algorithm expands the depths approaching leaf depth. But what is clearly shown is
a reasonable expanded node count for the first move (which will be near worst case) and
then a decrease as the moves accumulate and occupied board spaces restrict potential moves
(pruning the tree naturally).

18

7.3 Minimax Depth 4, Alpha Beta Depth 4

The results of both search algorithms searching to a depth of 4 are shown below. Trends
here are similar to the previous results for depth 3. Both algorithms yield identical score
results as they search the same space, and alpha beta pruning results in fewer expanded
nodes and therefore reduced movement times (faster search).

Figure 9: Adversarial search results for minimax and alpha beta agents both using depth 4.

19

7.4 Minimax Depth 4, Alpha Beta Depth 5

Note: animations were generated for every game in this result set. They are included in
the form of .gif files. They can viewed easily in an internet browser such as Chrome.

The results of minimax searching to a depth of 4 and alpha beta searching to a depth
of 5 are shown below. As expected, the resultant scores are not the same. Here, alpha
beta is actually searching a much larger space (tree expands exponentially) than minimax
by searching a level deeper. This resulted in slower average move times, despite a more
efficient search. Ie: an efficient search algorithm searching an enormous space can still take
longer than an inefficient search algorithm searching a small space, but the more efficient
algorithm will have been exposed to more information. By searching an extra level deeper,
the alpha beta pruning algorithm was able to look further ahead at the results of a move. In
practice this didn’t yield consistently better move decisions, as the evaluation function was
too naive to reliably predict the final outcome from an intermediate state. Additionally the
horizon effect could likely play a role in how accurate the predictions were, with a shallower
search depth sometimes resulting in better choices in the long run. But this was not the
result of information advantage, just luck and game board design.

Figure 10: Adversarial search results for minimax (depth 4) and alpha beta (depth 5) agents.

20

8 Analysis & Discussion

Notes
As mentioned previously, while the final scores of the included implementations are consis-
tent, they will most likely vary from other implementations depending on how tie breakers
and evaluation functions were implemented. Additionally, for reasons already stated, the
search algorithms are conducted on the resultant states of the first possible set of moves.
This will yield slightly higher node expansions for the alpha beta pruning as the first depth
layer will not be pruned, but the search algorithm is still 100% effective and optimal from
a supplied root node. The root nodes used for searching just happen to be the game states
that result from the first set of allowable moves in the game state currently occupied by the
player.

Evaluation Functions
The evaluation function has arguably the most impact on the algorithms performance as it
must accurately estimate the utility of a state. If the state is a leaf node then the evaluation
is very simple because the winner of the game is known by reading the scores off the board.
For intermediate states however, the evaluation function can become very complicated. The
more complex the game, the more complex the evaluation function generally.

For the listed results, the evaluation function was kept very simple are arguably extremely
naive. Because grid spaces can be stolen in WarGame, it wasn’t the best as predicting the
leaf node utility. But it did provide a very easy way to evaluate the intermediate state in
question.

pub l i c i n t eva luate (GameStateNode state , boolean bIsMaxNode){
2 i n t h e u r i s t i c ;

i n t maxPlyrScore = s t a t e . getMaximizingPlayer () . getCurrentScore () ;
4 i n t minPlyrScore = s t a t e . getMinimiz ingPlayer () . getCurrentScore () ;

i n t s c o r eD i f f e r e n c e = maxPlyrScore − minPlyrScore ;
6

// de f au l t h e u r i s t i c
8 h e u r i s t i c = s c o r eD i f f e r e n c e ;

10 re turn h e u r i s t i c ;
}

:

21

A few modifications were tried in an attempt to incorporate the possibility of losing utility
from another player stealing grid spaces.

1 pub l i c i n t eva luate (GameStateNode state , boolean bIsMaxNode){
i n t h e u r i s t i c ;

3 i n t maxPlyrScore = s t a t e . getMaximizingPlayer () . getCurrentScore () ;
i n t minPlyrScore = s t a t e . getMinimiz ingPlayer () . getCurrentScore () ;

5 i n t s c o r eD i f f e r e n c e = maxPlyrScore − minPlyrScore ;

7 //Custom Heu r i s t i c : s c o r e d i f f e r e n c e a f t e r subt rac t ing the vu lne rab l e po in t s
from ac t i v e p layer ’ s s co r e

i n t securedScore ;
9 i f (bIsMaxNode) {

// i t i s the max p layer ’ s turn . . . bes t case i s p o s i t i v e s co r e d i f f e r e n c e and
l a r g e por t ion secured

11 i n t maxPlyrVulnPoints = s t a t e . getBoardState () . ge tVulnerab lePo int s (s t a t e .
getMaximizingPlayer () . getPlayerID ()) ;
s ecuredScore = maxPlyrScore − maxPlyrVulnPoints ;

13 h e u r i s t i c = securedScore − minPlyrScore ;
}

15 e l s e {
// i t i s the min p layer ’ s turn . . . bes t case i s negat ive s co r e d i f f e r e n c e and
l a r g e por t ion secured

17 i n t minPlyrVulnPoints = s t a t e . getBoardState () . ge tVulnerab lePo int s (s t a t e .
getMinimiz ingPlayer () . getPlayerID ()) ;
s ecuredScore = minPlyrScore − minPlyrVulnPoints ;

19 h e u r i s t i c = maxPlyrScore − securedScore ;
}

21 re turn h e u r i s t i c ;
}

:

The evaluation function attempted to determine the number of points that were exposed to
the opposing player’s M1 Death Blitz with the following method from BoardState.

pub l i c i n t getVulnerab lePo ints (S t r ing playerID) {
2 // determine which spaces are cu r r en t l y occupied by the s p e c i f i e d p layer

ArrayList<GridSpace> c on t r o l l e d = new ArrayList<GridSpace >() ;
4 f o r (i n t row = 0 ; row < t h i s . numGridRows ; row ++){

f o r (GridSpace gs : t h i s . g r id . get (row)){
6 i f (gs . i sOccupied () && gs . getRes identPlayerID () . equa l s (playerID)){

c on t r o l l e d . add (gs) ;
8 }

}
10 }

12 // determine which o f those occupied spaces could be s t o l e n on the nex turn
Set<GridSpace> vulnerab leGr idSpaces = new HashSet<GridSpace >() ;

14 f o r (GridSpace cont ro l l edSpace : c on t r o l l e d){
INNER:

16 f o r (GridSpace potentialEmptyNeighbor : cont ro l l edSpace . getNeighbor ingGridSpaces
()){

i f (! potentialEmptyNeighbor . i sOccupied ()){
18 f o r (GridSpace potentialOpponentSpace : potentialEmptyNeighbor .

getNeighbor ingGridSpaces ()){
i f (potentialOpponentSpace . i sOccupied () && ! potentia lOpponentSpace .

getRes identPlayerID () . equa l s (playerID)){
20 vulnerab leGr idSpaces . add (cont ro l l edSpace) ;

//This space j u s t has to be determined vu lne rab l e by any 1 neighbor ,
other ne ighbors don ’ t need to be cons ide red

22 break INNER;
}

24 }
}

26 }
}

28

// t a l l y the po t en t i a l l o s s
30 i n t vu lne rab l ePo in t s = 0 ;

22

f o r (GridSpace gs : vu lnerab leGr idSpaces){
32 vu lne rab l ePo in t s += gs . getValue () ;

}
34 re turn vu lne rab l ePo in t s ;
}

:

Unfortunately, the results did not show statistically significant improvement. Perhaps this
was because the implementation above considered all exposed points, and not the max
vulnerable to a single blitz.

23

Revisiting States
The search algorithms did not contain any intelligent check to prevent revisiting a previously
visited state via a different path. For example, if two different series of moves resulted in
identical game states, then that state was evaluated twice during the search. The search
algorithms did not maintain any form of tree structure in order to save on space. The
algorithm generated the search tree as it moved along. Despite the improvements to speed,
space performance and unnecessary tree formation that would have been pruned, this did
mean that repeated state detection was not implemented. It was a trade off, and data from
both methods would be required to make a solid statement about the design choice.

Depth Confusion
It is worth noting again that the nodes expanded by the agent using alpha beta pruning was
affected by the design choice to conduct the adversarial search on each child of the current
state, rather than the current state itself. This means a search depth of 5 is really at most
36*(search depth of 4). Arguably this had a big impact on performance for the agent playing
the game, but it did allow for fully functional minimax and alpha beta methods that were
compartmentalized enough to not interfere with extra functionality in the data structure.

Horizon Effect
All things the same, alpha beta pruning does not inherently result in a better choice than
minimax. In fact it cannot result in anything but the same choice as minimax. The benefit
of alpha beta pruning is actually the ability to save time and space. By being more efficient,
an agent can conduct a deeper search that may yield a better choice than a shallow search.
Indeed the statistics about expanded nodes and time per move yielded a clear advantage to

alpha beta, demonstrating it as the more efficient search. Yet, looking at the final scores
in the results of minimax to depth 4 vs. alpha-beta to depth 5, alpha-beta did not win
consistently. There is a reason for this. It is called the horizon effect.

The horizon effect describes the possibility that an agent will make a detrimental move, but
the effect is not visible because the computer does not search to the depth of the error (i.e.
beyond its ”horizon”). Since search depth is often limited for feasibility reasons, evaluating a
partial tree is common. This evaluation may give a misleading result and when a significant
change exists just over the horizon of the search depth, the agent could have made a bad
choice.

For War Game, the M1 Death Blitz presents enormous opportunity for drastic change and
turn around between player scores. This is the exact type of situation that manifests as the
horizon effect.

Potential Improvements
The first major improvement would be an intelligent evaluation function. The evaluation
function is really what limits the end result of the search algorithm and regardless of perfor-
mance, an algorithm is only as good as its result. Performance could be further improved by
intelligently ordering the moves for the alpha beta agent and perhaps implement a new data
structure that worked well with a search from the current state rather than a child. Lastly,
the horizon effect could be mitigated by implementing quiescence search. A quiescent search
would attempt to emulate the intuition of human players by abandoning bad-looking moves
and searching deeper into promising moves to make sure there aren’t black flags just over
the horizon.

24

Conclusions
This project was fun to implement. The usefulness of the implemented algorithms is im-
mediately obvious. Using these basic adversarial search algorithms, one could code a basic
AI player for most simple, turn based, 2 player games. From the results it was clear that
evaluation functions can make a big difference in the success of an AI player, while many
optimizations exist to improve the speed of an AI player.

25

