
ARCHITECTURE SUPPORT FOR DOMAIN-
SPECIFIC ACCELERATOR-RICH CMPS

Jason Cong, Mohammad Ali Ghodrat, Michael Gill,

Beayna Grigorian, and Glenn Reinman. 2014.

Presenter – David Young

Background:

■ 2 types of On-chip accelerators

– Tightly coupled (functional unit attached to a core)

– Loosely coupled (distant, attached to NoC, shared among multiple cores)

■ Sharing LCAs among all cores on-chip requires dispute resolution and scheduling

■ Paper focuses on efficient use of Loosely Coupled Accelerators (LCA)

Overview:

■ Related Work

■ Hardware resource management scheme for…

– sharing of loosely coupled accelerators

– arbitration of multiple requesting cores

■ Mechanism for accelerator virtualization

– compose larger virtual accelerator out of multiple smaller accelerators

– collaborate multiple copies of a simple accelerator

■ Simulation methods

■ Results from benchmarks representing 4 different application domains

– Demonstrate performance + energy improvements over software

– Additional improvements from load balancing + simplified communication

Current use of accelerators is limited

■ ASIC designs lack reusability across different applications

■ On-chip accelerators are mostly limited to specific applications

– Via specific functionality (be it simple or complex)

■ Factors limited the use of accelerators

– Overhead involved in their use (mostly from interacting with OS)

– No efficient management for sharing LCAs

■ among different cores

■ across different applications

Related work does not focus on On-Chip,
Hardware Based management of LCAs

■ Implementing application specific accelerators with ASIC or FPGA

– Mostly consider single accelerator dedicated to single application

■ Reconfigurable computing

– Mostly deal with customized accelerators which are OFF-CHIP

■ On-Chip Integration of accelerators

– Generally deal with tightly coupled accelerators

■ Accelerator management

– Mostly OS support/software implementations

New architecture framework could increase
use of Accelerators

■ Propose ARC – accelerator rich CMP architecture framework

– Resource management scheme with low overhead

– Minimally invasive to core designs

– Easy for application authors to take advantage of

■ Paper provides

– Accelerator allocation protocol

– Approach to accelerator virtualization

– Fully automated simulation tool-chain

ARC Idea 1: Reduce overhead by moving mechanisms
from OS driver to hardware.

■ Typical system using accelerators

– Arbitration and communication mechanisms provided by an OS driver

– To access an accelerator, a core uses an accelerator driver (OS call).

■ Overhead! Significant if accelerators are numerous, and used frequently.

■ Moving mechanisms from OS driver to hardware

– Reduce cost of interacting with accelerators

– Allow for efficient sharing of accelerator resources

ARC Idea 2: Breaking accelerators into smaller pieces
will increase utilization.

■ Different functional accelerators may share internal sub components

■ Break down accelerators into smaller pieces and permit communication

■ Share common elements

– Increase utilization

– Increase Range of accelerator functionality in given chip area

■ Requires more complex management mechanism

Two different micro-architectures of ARC intended to
address arbitration of accelerator resources

■ GAM (Global Accelerator Manager)

– First implementation

■ GAM+

– Improved form

– Address shortcomings of first implementation

ARC with GAM

■ Components

– Cores, accelerators, GAM,

shared L2 caches,

shared NoC routers

– NoC routers everywhere!

■ Expanded ISA

– 4 new instructions used for interacting with accelerators

■ Request accelerator availability (lcacc-req)

■ Request use of specific accelerator (lcacc-rsv)

■ Interact directly with accelerator (lcacc-cmd)

■ Release accelerator (lcacc-free)

– No OS interaction required

– Execution of instructions results in message being send to device on NoC (GAM or
accelerator)

GAM: Cores communicate with accelerators directly.

■ Steps taken when a core uses a single accelerator

1. Core sends request to GAM with cores it may need, GAM

responds list of accelerator IDs & estimated wait times

2. Core sends sequence of reservations for specific accelerators

to GAM and waits for permission to use while GAM configures

requested accelerators.

3. Core write task description into shared memory and sends

command msg to accelerator identifying the memory address

of the task description. Accelerator loads and begins task.

4. Accelerator finishes and notifies core. Core sends free msg to

GAM to free accelerator.

■ Significant Shortcomings

– Cannot divide work among multiple accelerators

– Potentially long wait times when thread reserving accelerator

Revisions for GAM+ address shortcomings of GAM

■ Revised method by which threads communicate work to accelerators

■ Created task groups without dependencies (can be scheduled in parallel)

■ GAM becomes interface when communicating with accelerators

– Schedules task groups to accelerators

– Cores don’t have to interact directly with accelerators

GAM+ revisions simplify communication

■ Revisions

– Simple scheduling algorithm

– Small local TLB

– Small table that maps “requesting threads” to “accelerator progress info”

– Threads send task description to GAM+ which forwards it to accelerators as

resources become available.

– No longer need request, reserve or free instructions. Only 1 instruction

(command) is required.

■ GAM+ vs GAM

– Simplified communication

– Simplified ISA

– Reduction in overhead of setting up accelerator

– Increase accelerator utilization, by allowing single requesting thread to utilize

all accelerators of given type in the system.

GAM+, not core, communicates with accelerators directly

■ Steps taken when a core uses a single accelerator (GAM+)

1. Core writes (to the shared memory) the task description to be

performed.

2. Core sends mem. address of task description to GAM+, which

reads header to find out how many task groups and what kind

of accelerators needed.

3. As accelerators become available, GAM+ forwards task

description to each accelerator, specifying which task group is

assigned to that accelerator. Accelerators notify GAM+ when

finished.

4. When all tasks completed, GAM+ notifies CPU that computation

is done.

■ GAM+ interleaves task groups of multiple requesting threads

– Round-robin scheduling policy

– Priority based scheduling possible

– Helps eliminate wait times

Lightweight Interrupt Support

■ CPU needs to be notified of accelerator progress

■ ARC lightweight interrupts do not involve OS interaction

■ Sources of Interrupts

– 3 for GAM (Gam responses, TLB misses, accelerator finished)

– 2 for GAM+ (GAM notifying core that work is done, TLB misses)

■ Cores in ARC system modified to support lightweight interrupts

– Interrupts sent to core via interrupt packet through NoC

■ Packet includes recipient thread ID, and interrupt specific info

– Interrupt controller in core’s network interface receives packets

■ Uses queue to buffer packets

– Lightweight interrupt interface in the core

■ Receives interrupt from interrupt controller

■ Software interface to help service interrupt

Invoking Accelerators still costly, so amortize
overhead over large amount of work

■ Task descriptions should be extremely detailed

– Arg locations, data layout, accelerators involved, computations, operation order

– Removes need for communication between accelerator and core

– Allows accelerators to be general and coordinate in groups

■ Accelerator evaluates the detailed description

– Series of steps performed in order

■ Each has mem transfers and computations that can be executed concurrently

– Naming convention

■ Task : each step

■ Task group: collection of tasks performing same computation on different data

Sharing accelerators with GAM requires time estimates

■ Accomplished jointly between software and the GAM

– GAM provides thread with pre-allocation info and arbitrates among threads

– Software thread responsible for making use of accelerator post allocation

■ Thread can opt to run task itself if estimated wait time is too high

– GAM will predict these situations for the thread, but needs an estimated

duration of tasks to be performed

– Time estimates are data dependent, so requesting core submits estimate of

time accelerator would be used

■ Estimates based on pre-constructed profiles of different execution on given

accelerators + polynomial fitting

Sharing accelerators with GAM+ is less complicated

■ Simplified arbitration mechanism (hardware scheduler)

– Threads simply send a task (core not responsible for acquiring, scheduling or

freeing accelerators)

– Eliminates some software time

– No need for wait-time estimation

– Under very staged circumstances GAM+ slower than GAM.

– In most cases GAM+ has a net gain

Accelerator virtualization with two techniques

■ Composing different types to create new types, or same types to create larger accelerator

■ Accelerator chaining (Output of accelerator feeds input of another)

– Traditionally accelerators communicate through system memory

■ Thread uses shared memory to read from acc#1’s SPM and write to acc#2’s SPM.

– Instead, use two DMA-controllers

■ Source DMA-cntrl sends content of src SPM to dst DMA-cntrl who writes to dst SPM

■ Accelerator composition (implemented as a series of calls to other physical accelerators)

– Library of virtual accelerators provided to app author as if they existed in hardware

– Just decomposition rules breaking down large problem into smaller sub-problems

■ Rules applied recursively to express virtual accelerators as calls to physical accelerators

– In GAM, software selects best decomposition strategy

– In GAM+, core allows GAM+ to schedule the strategy

Accelerator Extraction Methodology:

■ Software module called “virtualizer” outputs a DLL

■ Given an application, the module uses static analysis and profiling to…

– Create list of candidates for accelerators to be extracted

– Weigh candidates by selection criteria to create database of accelerators

■ Criteria: area, performance, energy, criticality etc.

– Create new accelerators from available accelerators in the platform hardware

using the database and transformation rules.

■ Restrictions:

– Systems with GAM/GAM+ restrict the type of LCAs that can be included

■ GAM requires LCAs to have finite execution time that can be estimated

■ LCAs cannot be permanently associated with certain cores

Evaluation Introduction:
■ Varied benchmarks

– Different levels of parallel friendly, computation bound, communication bound.

– Represent 4 application domains (MedImg, Com, CompVis, Nav)

■ Automated Simulation Tool-Chain

– Systems too complex to author by hand (lots of accelerators + communication)

– Complex tools used to create cycle-accurate simulator modules for accelerators

– GAM/+ modeled as state machine and then automatic tools synthesize timing info

■ Simulator infrastructure

– Modified version of GEMS cycle accurate sim (runs on top of Simics)

– Accelerators, GAM/+ and CPU all attached to network interface stubs

■ Allows flexible communication among components via virtual channel in NoC

■ Specific Simulation

– Multi-core based on mix of Ultra-SPARC-III-i processors and accelerators

– Maintain fixed cache and network configs, per processor L1 cache + distributed L2

Results focus on GAM+:

■ Cong et al. [2012] showed

– ARC reducing OS overhead for LCA arbitration

– GAM estimation accuracy

– Benefits of using lightweight interrupt protocol

■ Cong et al. [2014] focuses on other aspects

– Performance improvements

– Energy savings

– OS overhead reduction for new domains

– Benefit of GAM+ over GAM

■ Cong et al. [2014] included benchmark results

– Baseline… native (non-simulated) execution of benchmarks on 2GHz intel xeon

E5405 core

– Accelerators + HW (GAM)

– Accelerators + HW (GAM+)

GAM+ demonstrates speedup + energy efficiency gains
over native software implementation
■ Increase going from 1->4 LCAs shows benefit of

dynamic load balancing

■ Energy efficiency trends closely with performance

– accelerators have minimal impact on total power

consumption, which is mostly attributed to NoCs

and caches

■ Some results don't scale as well w/ # of accelerators

– SURF, Texture Synthesis, Stream Clusters

– feature large # of small accelerated regions

resulting in uneven distribution and poor scaling

■ Takeaway:

– Benefit of adding accelerators correlates heavily

with data parallelism inherent in given

application

Overall, GAM+ improves on GAM
■ GAM restricted to single accelerator while GAM+ can

use arbitrary number

■ Again energy benefit trends with performance

■ In most cases, GAM & GAM+ perform similarly

provided 1 LCA

■ The overhead of initializing an accelerator with GAM

is greater than with GAM+

– Generally this is insignificant

– But if accelerator use time >> prep time, it

becomes significant.

GAM+ has situational
benefits and drawbacks
■ Benefits of GAM+

– Texture Synthesis Benchmark

■ Accelerator is used repeatedly for small jobs

■ For GAM, ~20% of total execution time is
initialization.

■ Compare 1LCA GAM to GAM+

■ Drawbacks of GAM+

– Medical imaging benchmarks using 1LCA

– GAM+ won’t assign more work to the
accelerator until previous work is done.

– If the assigned task group is small relative to
total amount of tasks, there will be an
overhead with GAM+

■ Balancing act

– smaller task groups increase the overhead
associated with allocation

– larger task groups make it hard for GAM+ to
distribute work evenly amongst many
accelerators

Virtualized Accelerators can match performance
of Physical Accelerators
■ Virtualized a 2D and a 3D FFT computation

using a 1D FFT engine

■ Graphs compare virtualized approach with the

physical/monolithic implementation of 2D and

3D FFT engines

■ results show the ratio of computation time

– (virtual LCA computation time)/(physical

LCA computation time)

■ Can match performance of physical 2D FFT

using 4x 1D FFT

■ Can match performance of physical 3D FFT

using 5x 1D FFT

■ No data on energy efficiency.

Advocating use of efficient hardware-based
techniques for managing and interfacing with LCAs.

■ Presented hardware resource management scheme for sharing LCA and arbitrating

multiple requesting cores

■ Presented mechanism of virtualizing accelerators

– Compose larger accelerator from smaller accelerators

– Collaborating with multiple copies of single accelerators

■ Results show significant improvements over software implementation

■ Results showed additional benefits using GAM+

– Enhanced load balancing

– Simplified communication

